Flipping Physics Lecture Notes: A Problem to Review SOH CAH TOA and the Pythagorean Theorem for use in Physics

In this problem we are trying to find y, H and $\theta_{2}=$?
We could use the fact that the interior angles of a triangle add up to 180°, like this:
$\theta_{1}+\theta_{2}+90^{\circ}=180^{\circ} \Rightarrow \theta_{1}+\theta_{2}=90^{\circ} \Rightarrow \theta_{2}=90^{\circ}-\theta_{1}=90^{\circ}-33^{\circ}=57^{\circ}$
However, because we are trying to review SOH CAH TOA and the Pythagorean Theorem, let's not do that this time. On a quiz or test, you certainly should, however not right now.

SOH means $\sin \theta=\frac{O}{H} ;$ CAH means $\cos \theta=\frac{A}{H} \&$ TOA means $\tan \theta=\frac{O}{A}$ Where O means Opposite, A means Adjacent and H means Hypotenuse. The Hypotenuse is always opposite the 90° angle.

To find the Hypotenuse we can use CAH:

$$
\begin{aligned}
& \cos \theta=\frac{A}{H} \Rightarrow \cos \theta_{1}=\frac{x}{H} \Rightarrow \cos (33)=\frac{4.7}{H} \Rightarrow H \cos (33)=\frac{4.7 H}{H} \\
& \Rightarrow H \cos (33)=4.7 \Rightarrow \frac{H \cos (33)}{\cos (33)}=\frac{4.7}{\cos (33)} \Rightarrow H=\frac{4.7}{\cos (33)} \\
& H=5.6041 \approx 5.6 \mathrm{~m}
\end{aligned}
$$

To find y we can use the Pythagorean Theorem:
$a^{2}+b^{2}=c^{2} \Rightarrow x^{2}+y^{2}=H^{2} \Rightarrow y^{2}=H^{2}-x^{2} \Rightarrow y=\sqrt{H^{2}-x^{2}}$
$\Rightarrow y=\sqrt{5.6^{2}-4.7^{2}}=3.0447 \approx 3.0 \mathrm{~m}$
a

To find θ_{2} we can use TOA:
$\tan \theta=\frac{O}{A} \Rightarrow \tan \theta_{2}=\frac{x}{y}=\frac{4.7}{3.0522} \Rightarrow \tan ^{-1}\left(\tan \theta_{2}\right)=\tan ^{-1}\left(\frac{4.7}{3.0522}\right)$
$\theta_{2}=\tan ^{-1}\left(\frac{4.7}{3.0522}\right)=57^{\circ}$
Remember, SOH CAH TOA and the Pythagorean Theorem only work on Right Triangles.

