Flipping Physics Lecture Notes: Introduction to Velocity and Speed
Velocity: Symbol is lowercase v. Equation is: $v=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}$
Velocity has both Magnitude and Direction.
Example problem: Mr.p takes his dog Buster for a walk. If they walk for 27 minutes and travel 1.89 km East, what is their average velocity in meters per second?

Knowns: $\Delta t=27$ minutes, $\Delta x=1.89 \mathrm{~km}$ East, $\mathrm{v}_{\mathrm{avg}}=$?
$v=\frac{\Delta x}{\Delta t}=\frac{1.89 \mathrm{~km}}{27 \mathrm{~min}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \mathrm{~min}}{60 \mathrm{sec}}=1.1 \overline{6} \approx 1.2 \frac{\mathrm{~m}}{\mathrm{~s}} \mathrm{East}$

Speed: speed $=\frac{\text { distance }}{\text { time }}$
Speed has Magnitude only with no direction
Velocity \neq Speed just like Displacement \neq Distance

