

Flipping Physics Lecture Notes: Average Velocity Example Problem with Three Velocities
Example Problem: Buster and mr.p embark on a southward journey. First they walk South at $6.5 \mathrm{~km} / \mathrm{hr}$ for 1.1 hours. Then they stop to take a nap for 18 minutes and then continue South at $5.5 \mathrm{~km} / \mathrm{hr}$ for 1.2 hours. (a) What was their average velocity for the whole trip? (b) What was their displacement for the whole trip?

Knowns: $v_{1}=6.5 \frac{\mathrm{~km}}{\mathrm{hr}} ; \Delta t_{1}=1.1 \mathrm{hr} ; \Delta t_{2}=18 \mathrm{~min} \times \frac{1 \mathrm{hr}}{60 \mathrm{~min}}=0.3 \mathrm{hr} ; v_{2}=0 ; v_{3}=5.5 \frac{\mathrm{~km}}{\mathrm{hr}} ; \Delta t_{3}=1.2 \mathrm{hr}$ (a) $v_{\text {total }}=? \quad$ (b) $\Delta x_{\text {total }}=? \quad$ (all directions are South)
$v=\frac{\Delta x}{\Delta t} \Rightarrow(\Delta t) v=\frac{\Delta x}{\Delta t}(\Delta t) \Rightarrow v \Delta t=\Delta x \Rightarrow v_{1} \Delta t_{1}=\Delta x_{1} \Rightarrow \Delta x_{1}=\left(6.5 \frac{\mathrm{~km}}{\mathrm{hr}}\right)(1.1 \mathrm{hr})=7.15 \mathrm{~km}$
$\Delta x_{2}=v_{2} \Delta t_{2}=(0)(0.3)=0 \mathrm{~km} \& \Delta x_{3}=v_{3} \Delta t_{3}=\left(5.5 \frac{\mathrm{~km}}{\mathrm{hr}}\right)(1.2 \mathrm{hr})=6.6 \mathrm{~km}$

Part	$\Delta \mathrm{t}(\mathrm{hr})$	$\mathrm{v}\left(\frac{k m}{h r}\right)$ South	$\Delta \mathrm{x}(\mathrm{km})$
1	1.1	6.5	7.15
2	0.3	0	0
3	1.2	5.5	6.6

$$
\Delta x_{t}=\Delta x_{1}+\Delta x_{2}+\Delta x_{3}=(7.15)+0+(6.6)=13.75 \approx 14 k m \text { South Answer to Part (b) }
$$

Part (a) $\Delta t_{t}=\Delta t_{1}+\Delta t_{2}+\Delta t_{3}=(1.1)+(0.3)+(1.2)=2.6 \mathrm{hr}$ $v_{t}=\frac{\Delta x_{t}}{\Delta t_{t}}=\frac{13.75 \mathrm{~km}}{2.6 \mathrm{hr}}=5.28846 \approx 5.3 \frac{\mathrm{~km}}{\mathrm{hr}}$ South

Note: $\frac{v_{1}+v_{2}+v_{3}}{3}=\frac{7.15+0+6.6}{3}=4.58 \overline{3} \neq 5.28846=v_{\text {avg }}$
This is only true if each part is for an equal amount of time.

