Flipping Physics Lecture Notes:
Introduction to Acceleration with Prius Brake Slamming Example Problem
Acceleration: $a=\frac{\Delta v}{\Delta t}$ \& $a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}} \& a \Rightarrow \frac{\mathrm{~m} / \mathrm{s}}{\mathrm{s} / 1}=\frac{\mathrm{m}}{\mathrm{s}} \times \frac{1}{\mathrm{~s}}=\frac{\mathrm{m}}{\mathrm{s}^{2}}$ (flip the guy and multiply!)
Acceleration, just like Displacement and Velocity, has both Magnitude and Direction.
Example Problem: Mr.p is driving his Prius at $36 \mathrm{~km} / \mathrm{hr}$ East when a basketball appears bouncing across the street in front of him. His gut reaction is to slam on the brakes. This brings the vehicle to a stop in 1.75 seconds. What was the acceleration of the vehicle?

Knowns: $v_{i}=36 \frac{\mathrm{~km}}{\mathrm{hr}}$ East $\times \frac{1 \mathrm{hr}}{3600 \mathrm{~s}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ East $; v_{f}=0 ; \Delta t=1.75 \mathrm{~s} ; a=$?

$$
a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{0-10}{1.75}=-5.7143 \approx-5.7 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \text { East }
$$

FYI: $v_{i}=36 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1000 \mathrm{~m}}{\mathrm{lkm}} \frac{\mathrm{lmi}}{1609 \mathrm{~m}}=22.3741 \approx 22 \frac{\mathrm{mi}}{\mathrm{hr}}$
(Yes, 23.3741 was a typo in the video, sorry.)

