

Flipping Physics Lecture Notes:
Toy Car UAM Problem with Two Difference Accelerations
Example Problem: A toy car starts from rest and experiences an acceleration of $1.56 \mathrm{~m} / \mathrm{s}^{2}$ for 1.6 seconds and then brakes for 1.1 seconds and experiences an acceleration of $-2.07 \mathrm{~m} / \mathrm{s}^{2}$. (a) How fast is the car going at the end of the braking period and (b) how far has it moved?

Knowns: $v_{1 i}=0 ; \Delta t_{1}=1.6 s ; a_{1}=1.56 \frac{m}{s^{2}} ; \Delta t_{2}=1.1 s ; a_{2}=-2.07 \frac{m}{s^{2}} ; v_{2 f}=? ; \Delta x_{t}=?$

Part 1: $v_{1 f}=v_{1 i}+a_{1} \Delta t_{1}=0+(1.56)(1.6)=2.496 \frac{\mathrm{~m}}{\mathrm{~s}}=v_{2 i}$
Note: $\mathrm{v}_{1 \mathrm{f}}=\mathrm{v}_{2 \mathrm{i}}$ because they are at the same moment in time. The end of part 1 is the beginning of part 2.
Part 2: $v_{2 f}=v_{2 i}+a_{2} \Delta t_{2}=2.496+(-2.07)(1.1)=0.219 \frac{\mathrm{~m}}{\mathrm{~s}} \approx 0.22 \frac{\mathrm{~m}}{\mathrm{~s}}$ [answer for part (a)]
In order to solve part (b), you need to realize that the total displacement is equal to the displacement for part 1 plus the displacement for part 2. (technically, the magnitudes of the displacements because we don't have direction.) So now we need to find each displacement individually and then add them together.

Part 1: $\Delta x_{1}=\frac{1}{2}\left(v_{1 f}+v_{1 i}\right) \Delta t_{1}=\frac{1}{2}(2.496+0)(1.6)=1.9968 m$
Part 2: $\Delta x_{2}=v_{2 i} \Delta t_{2}+\frac{1}{2} a_{2}\left(\Delta t_{2}\right)^{2}=(2.496)(1.1)+\frac{1}{2}(-2.07)(1.1)^{2}=1.49325 m$
Total: $\Delta x_{t}=\Delta x_{1}+\Delta x_{2}=1.9968+1.49325=3.49005 \approx 3.5 m$ [answer for part (b)]

The following is an incorrect solution to part (b) ...
$\Delta x_{t}=\frac{1}{2}\left(v_{2 f}+v_{1 i}\right) \Delta t_{t}=\frac{1}{2}\left(v_{2 f}+v_{1 i}\right)\left(\Delta t_{1}+\Delta t_{2}\right)=\frac{1}{2}(0.219+0)(1.6+1.1)=0.29565 \approx 0.30 m$
Because the acceleration is not constant for the whole problem; it is only constant for each part individually, not as a whole.

