

Flipping Physics Lecture Notes:
Graphical UAM Example Problem
Example Problem: Assuming an initial position of zero, complete the empty graphs. (assume 2 sig figs) (please note: in the problem, only the velocity versus time graph was given, the other two were blank)

Are equivalent and we can use either to find acceleration.
$a=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{t_{f}-t_{i}}=\frac{6-0}{3-0}=2.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Therefore on the acceleration vs. time graph we draw a horizontal line with a slope of zero at a value of $2.0 \mathrm{~m} / \mathrm{s}^{2}$.

The position as a function of time graph is slightly more complicated. We know:

- The initial position is zero, because it was stated in the problem.
- The slope of the line should increase as time increases because the velocity increases. In other words, it is an upward sloping curve.
- The slope of the position vs. time graph starts at zero because the initial velocity is zero.
- We can use a UAM equation because the acceleration is constant.
Now we need to pick some times and start determining displacements.
$\Delta x=\frac{1}{2}\left(v_{f}+v_{i}\right) \Delta t=\frac{1}{2}\left(v_{f}+v_{i}\right)\left(t_{f}-t_{i}\right)$
$\Delta x_{0-1}=\frac{1}{2}\left(v_{1}+v_{0}\right)\left(t_{1}-t_{0}\right)=\frac{1}{2}(2+0)(1-0)=1.0 m$
$\Delta x_{0-2}=\frac{1}{2}\left(v_{2}+v_{0}\right)\left(t_{2}-t_{0}\right)=\frac{1}{2}(4+0)(2-0)=4.0 \mathrm{~m}$
$\Delta x_{0-3}=\frac{1}{2}\left(v_{3}+v_{0}\right)\left(t_{3}-t_{0}\right)=\frac{1}{2}(6+0)(3-0)=9.0 m$
After you determine your displacement, plot the points and then add the upward sloping curve to connect the points.
Sorry about the typo in the video. The UAM equation is $\Delta x=\frac{1}{2}\left(v_{f}+v_{i}\right) \Delta t$ not $\Delta x=\frac{1}{2}\left(v_{f}-v_{i}\right) \Delta t$.

