

Flipping Physics Lecture Notes:
Analyzing the Apollo 15 Feather and Hammer Drop
A Basic Introductory Free-Fall Problem
In 1971 Astronaut David Scott during the Apollo 15 mission on the moon dropped a feather and a hammer from the same height. The video shows that both objects fall at the same rate regardless of their different masses.

Knowns:
$v_{i y}=0 ; g_{\text {moon }}=1.62 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; a_{y}=-g_{\text {moon }}=-1.62 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} ; \Delta t=36$ frames $\times \frac{1 \mathrm{sec}}{29.97 \text { frames }}=1.201201 \mathrm{sec} ; \mathrm{h}_{i}=$?
The acceleration is constant, so we can use the Uniformly $\underline{\text { Accelerated }} \underline{\text { Motion Equations: }}$

$$
\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2}=(0) \Delta t+\frac{1}{2}(-1.62)(1.201201)^{2}=-1.16874 \approx-1.2 m
$$

For those of you still using English units:
$\Delta y=-1.16874 m \times \frac{3.281 f t}{1 m}=-3.8346 f t \approx-3.8 f t$
So the hammer and feather were both dropped from about 1.2 meters or 3.8 feet off the surface of the moon.

