AP^{\circledR} is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.

Part (a): The voltmeter needs be placed in parallel with R_{1}, like this:

Part (b): The capacitor, C, is initially uncharged so when the switch is closed to position A, the capacitor has zero potential difference across it and therefore the equivalent resistance of the circuit is:

$$
R_{e q}=R_{1}+R_{2}=10+20=30 \Omega \text { and }
$$

$\Delta V=I R \Rightarrow I=\frac{\Delta V}{R} \Rightarrow I_{t}=\frac{\varepsilon}{R_{e q}}=\frac{20}{30}=\frac{2}{3} A=I_{1}=I_{2}$
and $\Delta V_{1}=I_{1} R_{1}=\left(\frac{2}{3}\right)(10)=\frac{20}{3}=6 . \overline{6} \approx 6.67 \mathrm{~V}$

Part (c i): "After a long time" the capacitor will be fully charged and there will be zero current through the
 circuit. This means that the potential difference across R_{1} will be zero and ...

Part (c ii): the potential difference across the capacitor will be the same as the emf of the battery.
$\varepsilon=\Delta V_{c}=20 V$ and $C=\frac{Q_{c}}{\Delta V_{c}} \Rightarrow Q_{c}=\left(\Delta V_{c}\right)(C)=(20)\left(15 \times 10^{-6}\right)=3.00 \times 10^{-4} C$
Part (d): The switch is moved to position B at $t=T$. The charge will remain @ $300 \mu \mathrm{C}$ in the capacitor and will not be discharged because the capacitor needs both plates attached to a closed loop to discharge through. The inductor resists a change in the current and right before $t=T$ there is no current in the inductor, therefore there will be no current in the inductor or either resistor at $t=T$. Therefore $\Delta V_{1}=0$.

Part (e i) "A long time after $\mathrm{t}=\mathrm{T}$ " means the current has reached a constant, maximum value. Therefore the change in the current with respect to time is zero or $\frac{d I}{d t}=0$. Therefore the potential difference across the inductor is also zero: $\varepsilon_{L}=-L \frac{d I}{d t}=-L(0)=0$. This works out to be exactly like part, however, instead of having the potential difference across the capacitor be zero, the potential difference across the inductor is zero. The equations work out the same and $I_{t}=\frac{\varepsilon}{R_{e q}}=\frac{20}{30}=\frac{2}{3} A=I_{1} \approx 0.667 \mathrm{~A}$

Part (e ii): The current through the inductor is the same as through $\mathrm{R}_{1} \mathrm{so}$:
$U_{L}=\frac{1}{2} L I^{2}=\frac{1}{2}(2)\left(\frac{2}{3}\right)^{2}=0 . \overline{4} \approx 0.444 J$
Part (f): Start by writing the equation for the potential difference around a loop:
$\varepsilon-\Delta V_{R_{1}}-\Delta V_{L}-\Delta V_{R_{2}}=0 \Rightarrow \varepsilon-I_{1} R_{1}-L \frac{d I}{d t}-I_{2} R_{2}=0 \Rightarrow \varepsilon-I_{t}\left(R_{1}+R_{2}\right)-L \frac{d I}{d t}=0$
It's hard to know where to stop on problems where you are asked to "write, but do not solve". Generally you don't need to plug in numbers or even begin solving the equation.

