

Flipping Physics Lecture Notes: Introduction to Projectile Motion

Any object flying through the vacuum you can breathe in both the x and y directions is in projectile motion. When solving a projectile motion problem you need to separate the x and y direction variables.

x direction	y direction
$a_{x}=0$	Free-Fall
Constant Velocity	$a_{y}=-g=-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$v_{x}=\frac{\Delta x}{\Delta t}$ (need to know 2 variables)	Uniformly Accelerated Motion (need to know 3 variables)
$\Delta \mathrm{t}$ is the same in both directions because it is a scalar and has magnitude only (no direction).	

List what you know in both the x and y directions and solve for $\Delta \mathrm{t}$ in one direction and then use it in the other direction.

The only equation in the x direction is $v_{x}=\frac{\Delta x}{\Delta t}$, therefore there are 3 variables in the x direction: $v_{x}, \Delta x$ \& Δt. Therefore, you need to know 2 variables in the x direction to find the other 1 .

In the y direction we have Uniformly Accelerated Motion, the equations for which are:

There are 5 variables in the UAM equations: $v_{f}, v_{i}, a, \Delta t, \& \Delta x$
There are 4 equations.
If you know 3 of the variables
you can find the other 2.
Which leaves you with 1 ...
$v_{f}=v_{i}+a \Delta t$
$v_{f}^{2}=v_{i}^{2}+2 a \Delta x$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}$
$\Delta x=\frac{1}{2}\left(v_{f}+v_{i}\right) \Delta t$

