

Flipping Physics Lecture Notes: Introduction to Projectile Motion

Any object flying through the vacuum you can breathe in both the x and y directions is in projectile motion. When solving a projectile motion problem you need to separate the x and y direction variables.

x direction	y direction
$a_x = 0$	Free-Fall
Constant Velocity	$a_y = -g = -9.81 \frac{m}{s^2}$
$v_x = \frac{\Delta x}{\Delta t}$ (need to know 2 variables)	Uniformly Accelerated Motion (need to know 3 variables)
At is the same in both directions because it is a scalar and has magnitude only (no direction).	

List what you know in both the x and y directions and solve for Δt in one direction and then use it in the other direction.

The only equation in the x direction is $v_x = \frac{\Delta x}{\Delta t}$, therefore there are 3 variables in the x direction: v_x , Δx &

 Δt . Therefore, you need to know 2 variables in the x direction to find the other 1.

In the y direction we have Uniformly Accelerated Motion, the equations for which are:

There are 5 variables in the UAM equations: v_f , v_i , a, Δt , & Δx

There are 4 equations. If you know 3 of the variables you can find the other 2. Which leaves you with 1 ...

$$v_{f} = v_{i} + a\Delta t$$

$$v_{f}^{2} = v_{i}^{2} + 2a\Delta x$$

$$\Delta x = v_{i}\Delta t + \frac{1}{2}a\Delta t^{2}$$

$$\Delta x = \frac{1}{2}(v_{f} + v_{i})\Delta t$$