

Flipping Physics Lecture Notes:
An Introductory Projectile Motion Problem
with an Initial Horizontal Velocity
(Part 1 of 2)
Example Problem: While in a car moving at 10.0 miles per hour, mr.p drops a ball from a height of 0.70 m above the top of a bucket. Part 1) How far in front of the bucket should he drop the ball such that the ball will land in the bucket?

This is a projectile motion problem, so we should list our know variables in the x and y directions:
x-direction: $\Delta x=?, v_{x}=10.0 \frac{m i}{h r} \times \frac{1 h r}{3600 \mathrm{sec}} \times \frac{1609 m}{1 m i}=4.469 \overline{4} \frac{\mathrm{~m}}{\mathrm{~s}}$
y-direction: $\Delta y=-0.70 m, a_{y}=-9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}, v_{i y}=0$
Because we know three variables in the y direction, we should start there to find the change in time.
$\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \Rightarrow-0.7=(0) \Delta t+\frac{1}{2}(-9.81) \Delta t^{2} \Rightarrow(2)(-0.7)=-9.81 \Delta t^{2}$
$\Rightarrow \Delta t^{2}=\frac{(2)(-0.7)}{-9.81} \Rightarrow \Delta t=\sqrt{\frac{(2)(-0.7)}{-9.81}}=0.377772 \mathrm{sec}$
Because change in time is a scalar and therefore independent of direction, we can use it in the x-direction:
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x} \Delta t=(4.469 \overline{4})(0.377772)=1.68843 \approx 1.7 m$
In the video I said, "If you decrease the speed of the car by half a mile per hour, you decrease the displacement in the x-direction of the ball by more than 8 cm ." Here is the mathematical proof:

Let's start by decreasing the car by half a mile per hour, this makes the initial velocity in the x-direction 9.5 mph .
Known variables:
x-direction: $\Delta x=?, v_{x}=9.5 \frac{m i}{h r} \times \frac{1 h r}{3600 \mathrm{sec}} \times \frac{1609 m}{1 m i}=4.24597 \overline{2} \frac{m}{s}$
y-direction: $\Delta y=-0.70 m, a_{y}=-9.81 \frac{m}{s^{2}}, v_{i y}=0$
The y-direction information doesn't change at all so we still get 0.377772 seconds for the change in time.
$\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \Rightarrow-0.7=(0) \Delta t+\frac{1}{2}(-9.81) \Delta t^{2} \Rightarrow(2)(-0.7)=-9.81 \Delta t^{2}$
$\Rightarrow \Delta t^{2}=\frac{(2)(-0.7)}{-9.81} \Rightarrow \Delta t=\sqrt{\frac{(2)(-0.7)}{-9.81}}=0.377772 \mathrm{sec}$ (see, it didn't change! ©)
Because change in time is a scalar and therefore independent of direction, we can use it in the x-direction: $v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x} \Delta t=(4.24597 \overline{2})(0.377772)=1.60401 \mathrm{~m}$

The difference in x displacement then is:
$1.68843-1.60401=0.084421 \mathrm{~m} \times \frac{100 \mathrm{~cm}}{1 \mathrm{~m}} \approx 8.4 \mathrm{~cm}$ (which is greater than 8 cm .)

