

Flipping Physics Lecture Notes:
An Introductory Projectile Motion Problem
with an Initial Horizontal Velocity
(Part 2 of 2)
Example Problem: While in a car moving at 10.0 miles per hour, mr.p drops a ball from a height of 0.70 m above the top of a bucket. Part 1) How far in front of the bucket should he drop the ball such that the ball will land in the bucket? (Yes, I left the solution to part i in here. It just seemed more logical to me that way.)

This is a projectile motion problem, so we should list our know variables in the x and y directions:
x-direction: $\Delta x=?, v_{x}=10.0 \frac{m i}{h r} \times \frac{1 h r}{3600 \mathrm{sec}} \times \frac{1609 m}{1 m i}=4.469 \overline{4} \frac{\mathrm{~m}}{\mathrm{~s}}$
y-direction: $\Delta y=-0.70 m, a_{y}=-9.81 \frac{m}{s^{2}}, v_{i y}=0$
Because we know three variables in the y direction, we should start there to find the change in time.
$\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \Rightarrow-0.7=(0) \Delta t+\frac{1}{2}(-9.81) \Delta t^{2} \Rightarrow(2)(-0.7)=-9.81 \Delta t^{2}$
$\Rightarrow \Delta t^{2}=\frac{(2)(-0.7)}{-9.81} \Rightarrow \Delta t=\sqrt{\frac{(2)(-0.7)}{-9.81}}=0.377772 \mathrm{sec}$
Because change in time is a scalar and therefore independent of direction, we can use it in the x-direction:
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=v_{x} \Delta t=(4.469 \overline{4})(0.377772)=1.68843 \approx 1.7 m$

Part 2) what is the final velocity of the ball right before it enters the bucket? In the y-direction:
$v_{f y}^{2}=v_{i y}^{2}+2 a_{y} \Delta y=0^{2}+(2)(-9.81)(-0.7) \Rightarrow v_{f y}=\sqrt{(2)(-9.81)(-0.7)}= \pm 3.70594=-3.70594 \frac{\mathrm{~m}}{\mathrm{~s}}$
In the x-direction the ball is moving with a constant velocity and therefore $v_{x}=4.469 \overline{4} \frac{\mathrm{~m}}{\mathrm{~s}}$. Now, to find the magnitude of the final velocity we can use the Pythagorean theorem:

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \Rightarrow v_{f}^{2}=v_{f x}^{2}+v_{f y}^{2} \\
& \Rightarrow v_{f}=\sqrt{v_{f x}^{2}+v_{f y}^{2}}=\sqrt{(4.469 \overline{4})^{2}+(-3.70594)^{2}}= \pm 5.80602 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

And now we need to find the direction:
$\sin \theta=\frac{O}{H}=\frac{v_{f x}}{v_{f}} \Rightarrow \theta=\sin ^{-1}\left(\frac{v_{f x}}{v_{f}}\right)=\sin ^{-1}\left(\frac{4.469 \overline{4}}{5.80602}\right)=50.3354^{\circ}$
Therefore the final velocity is: $v_{f} \approx 5.8 \frac{m}{s} @\left(5.0 \times 10^{1}\right)^{\circ}$ in front of the -y axis.
Possible useful definitions:

- Cheeky (adjective): impudent or irreverent, typically in an endearing or amusing way.
- Gormless (adjective): lacking sense or initiative; foolish.
- Nimwit (noun): a stupid or silly person.
- III-fated (adjective): destined to fail or have bad luck.
- Buffoon (noun): a ridiculous but amusing person; a clown.

