Flipping Physics Lecture Notes:
Nerd-A-Pult - Measuring the Initial Velocity

There are two things to measure, the initial speed and the initial angle. Let's start with the initial angle. I measured the hypotenuse of the triangle as 25.5 cm and took two measurement do determine the y side of the triangle: $y=16.5-4.4=12.1 \mathrm{~cm}$. Now we
can find theta: $\sin \phi=\frac{O}{H}=\frac{y}{H}$
$\Rightarrow \phi=\sin ^{-1}\left(\frac{y}{H}\right)=\sin ^{-1}\left(\frac{12.1}{25.5}\right)=28.327^{\circ}$

Now we need to look at the initial velocity angle with the horizontal. Notice that the horizontal line for the initial velocity creates a smaller similar triangle with the original larger triangle.

$$
\begin{aligned}
& \text { Simil } \\
& \text { ith the } \\
& \vdots \\
& \phi \\
& -\phi \\
& 61.7^{\circ}
\end{aligned}
$$

Now we need to determine the initial speed. For this I filmed several launches at 240 frames per second and measured the distance traveled by the ball in one frame. There were 5 that traveled 1.4 cm and 4 that traveled 1.3 cm for an average of: distance $_{\text {avg }}=\frac{(1.4 \times 5)+(1.3 \times 4)}{9}=1.3 \overline{5} \mathrm{~cm}$
Because there were 240 frames per second, that means that each frame lasts for $1 / 240^{\text {th }}$ of a second.
$\left(240 \frac{\text { frames }}{\text { second }}\right)^{-1}=\frac{1}{240} \frac{\text { seconds }}{\text { frame }} \&$ then using the equation for average speed I determined the average initial speed:
speed $_{\text {avg }}=\frac{\text { distance }_{\text {avg }}}{\text { time }_{\text {avg }}}=\frac{1.3 \overline{5} \mathrm{~cm}}{1 / 240 \mathrm{sec}}=325 . \overline{3} \frac{\mathrm{~cm}}{\mathrm{~s}} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=3.25 \overline{3} \frac{\mathrm{~m}}{\mathrm{~s}} \approx 3.25 \frac{\mathrm{~m}}{\mathrm{~s}}$
Therefore, with 3 significant figures: $v_{i}=3.25 \frac{\mathrm{~m}}{\mathrm{~s}} @ 61.7^{\circ}$ above the horizontal.
It didn't occur to me until after I made the first video that I really only should have had 2 significant digits on the initial speed measurements because the original distance measurements only had 2 sig figs, oops.

Also, the change in time in the "air" in the Nerd-A-Pult video is about 1-2 frames shorter than it should be, I think there may be some error in the measurement of the initial launch angle because the wooden beam holding ball bent slightly on contact, which is something I was unable to measure.

