

Flipping Physics Lecture Notes:
Deriving the Range Equation of Projectile Motion

The range of an object in projectile motion means something very specific. It is the displacement in the x direction of an object whose displacement in the y direction is zero. $\Delta x=$ Range $=R$ (in other words, "R", stands for Range.)

The Range Equation or $R=\frac{v_{i}^{2} \sin \left(2 \theta_{i}\right)}{g}$ can be

derived from the projectile motion equations. We start by breaking our initial velocity in to its components and then list everything we know in the x and y directions:
$\sin \theta=\frac{O}{H} \Rightarrow \sin \theta_{i}=\frac{v_{i y}}{v_{i}} \Rightarrow v_{i y}=v_{i} \sin \theta_{i} \&$
$\cos \theta=\frac{A}{H} \Rightarrow \cos \theta_{i}=\frac{v_{i x}}{v_{i}} \Rightarrow v_{i x}=v_{i} \cos \theta_{i}=v_{x}$
Remember that in the x-direction an object in projectile motion has a constant
 velocity, therefore $v_{i x}=v_{x}$.
x-direction: $v_{i x}=v_{i} \cos \theta_{i}=v_{x}, \Delta x=R=$?
y-direction: $\Delta y=0 \& a_{y}=-g$ (remember $g_{\text {Earrh }}=+9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$)
Let's start in the x -direction where there is a constant velocity and solve for the Range.
$v_{x}=\frac{\Delta x}{\Delta t} \Rightarrow \Delta x=R=(\Delta t) v_{x}=(\Delta t) v_{i} \cos \theta_{i}$
Now we need to solve for $\Delta \mathrm{t}$ in the y -direction and substitute $\Delta \mathrm{t}$ in to $R=(\Delta t) v_{i} \cos \theta$
$\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2}=0 \Rightarrow 0=v_{i y}+\frac{1}{2} a_{y} \Delta t \Rightarrow v_{i y}=-\frac{1}{2} a_{y} \Delta t=-\frac{1}{2}(-g) \Delta t=\frac{1}{2} g \Delta t$
$\Rightarrow 2 v_{i y}=g \Delta t \Rightarrow \Delta t=\frac{2 v_{i y}}{g}=\frac{2 v_{i} \sin \theta_{i}}{g}$
And now we can substitute back in.
$R=(\Delta t) v_{i} \cos \theta_{i}=\left(\frac{2 v_{i} \sin \theta_{i}}{g}\right) v_{i} \cos \theta_{i}=\frac{v_{i}^{2}\left(2 \sin \theta_{i} \cos \theta_{i}\right)}{g} \Rightarrow R=\frac{v_{i}^{2} \sin \left(2 \theta_{i}\right)}{g}$
This uses the sine double angle formula from trig: $2 \sin \theta_{i} \cos \theta_{i}=\sin \left(2 \theta_{i}\right)$
FYI: It is generally not assumed that students in an algebra based physics class will know or remember various trig functions like this.

