Flipping Physics Lecture Notes:
Introductory Newton's 2nd Law Example Problem and Demonstration (or Finding the Force of Friction between a Dynamics Cart and Track)

Newton's Second Law of Motion: $\sum \vec{F}=m \vec{a}$
Example Problem: A 613 g cart is released from rest on a horizontal track and travels 52.0 cm in 1.15 seconds while experiencing an average, horizontal applied force of 0.490 N . What is the magnitude of the force of friction between the cart and the track?

Known Values: $m=613 \mathrm{~g} ; v_{i}=0 ; \Delta x=52.0 \mathrm{~cm} ; \Delta t=1.15 \mathrm{~s} ; F_{a}=0.490 \mathrm{~N} ; F_{f}=$?
Convert mass to kg: $m=613 \mathrm{~g} \times \frac{\mathrm{lkg}}{1000 \mathrm{~g}}=0.613 \mathrm{~kg}$
Convert displacement to meters: $\Delta x=52.0 \mathrm{~cm} \times \frac{1 \mathrm{~m}}{100 \mathrm{~cm}}=0.52 \mathrm{~m}$
Draw the Free Body Diagram of the forces acting on the cart:
Use Newton's Second Law:

$$
\sum F_{x}=F_{a}-F_{f}=m a_{x} \Rightarrow F_{a}=m a_{x}+F_{f} \Rightarrow F_{f}=F_{a}-m a_{x}
$$

The only variable we don't know is the acceleration in the x-direction. We can consider the acceleration to be constant because the forces are constant (or at least very close to constant). Therefore we can use the uniformly accelerated motion equations:
$\Delta x=v_{i x} \Delta t+\frac{1}{2} a_{x} \Delta t^{2}=(0) \Delta t+\frac{1}{2} a_{x} \Delta t^{2}=\frac{1}{2} a_{x} \Delta t^{2} \Rightarrow a_{x} \Delta t^{2}=2 \Delta x \Rightarrow a_{x}=\frac{2 \Delta x}{\Delta t^{2}}$
$\Rightarrow a_{x}=\frac{(2)(0.52)}{1.15^{2}}=0.786389 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
And now we can go back to the equation for friction and substitute in numbers:

$$
F_{f}=F_{a}-m a_{x}=(0.49)-(0.613)(0.786389)=0.00794329 \approx 0.00794 \mathrm{~N}
$$

Is the force of friction negligible?

$$
\frac{F_{f}}{F_{a}}=\frac{0.00794329}{0.490}=0.0162108 \approx 0.016 \Rightarrow 0.016 \times 100=1.6 \%
$$

