Flipping Physics Lecture Notes:
Understanding Uniformly Accelerated Motion

We usually look at the dimensions for acceleration as: $a=\frac{\Delta v}{\Delta t} \Rightarrow \frac{m}{S^{2}}$
Today we are going to look at the dimensions for acceleration as: $a=\frac{\Delta v}{\Delta t} \Rightarrow \frac{\mathrm{~m} / \mathrm{s}}{\mathrm{s}}$ or $\frac{m}{\mathrm{~s}}$ every second Example \#1: A ball is released from rest and has an acceleration of 2 meters per second every second. (a) What is the velocity of the ball at $t=1,2,3,4$ and 5 seconds? (b) If the initial position of the ball is zero, what is the position of the ball at $t=1,2,3,4$ and 5 seconds?

Part (a): If the initial velocity of the ball is zero and the acceleration is $2 \frac{m}{S}$ every second, then the velocity will increase by $2 \frac{m}{s}$ every second. At $\mathrm{t}=0 \mathrm{~s}, \mathrm{v}=0 \frac{\mathrm{~m}}{\mathrm{~s}}$; at $\mathrm{t}=1 \mathrm{~s}, \mathrm{v}=2 \frac{\mathrm{~m}}{\mathrm{~s}}$; at $\mathrm{t}=2 \mathrm{~s}, \mathrm{v}=4 \frac{\mathrm{~m}}{\mathrm{~s}}$; at $\mathrm{t}=3 \mathrm{~s}, \mathrm{v}=6 \frac{\mathrm{~m}}{\mathrm{~s}}$; at $\mathrm{t}=4 \mathrm{~s}, \mathrm{v}=8 \frac{\mathrm{~m}}{\mathrm{~S}}$ \& at $\mathrm{t}=5 \mathrm{~s} v=10 \frac{\mathrm{~m}}{\mathrm{~s}}$. Part (b): $\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2}=(0) \Delta t+\frac{1}{2}(2) \Delta t^{2}$ $\Rightarrow \Delta x=\Delta t^{2} \Rightarrow \Delta x_{1}=1^{2}=1 m ; \Delta x_{2}=2^{2}=4 m$ $\Delta x_{3}=3^{2}=9 m ; \Delta x_{4}=4^{2}=16 m ; \Delta x_{5}=5^{2}=15 m$

$t(s)$	$x(m)$	$v(m / s)$	$a(m / s$ each $s)$
0	0	0	2
1	1	2	2
2	4	4	2
3	9	6	2
4	16	8	2
5	25	10	2

Example \#2: A ball is given an initial velocity of $-10 \mathrm{~m} / \mathrm{s}$ and has an acceleration of 2 meters per second every second. (a) What is the velocity of the ball at $t=1,2,3,4$ and 5 seconds? (b) If the initial position of the ball is 25 meters, what is the position of the ball at $t=1,2,3,4$ and 5 seconds?
Part (a): If the initial velocity of the ball is $-10 \frac{m}{S}$ and the acceleration is $2 \frac{m}{s}$ every second, then the velocity will increase by $2 \frac{m}{s}$ every second. At $\mathrm{t}=0 \mathrm{~s}, \mathrm{v}=-10 \frac{m}{\mathrm{~s}}$; at $\mathrm{t}=1 \mathrm{~s}, \mathrm{v}=-8 \frac{m}{\mathrm{~s}}$; at $\mathrm{t}=2 \mathrm{~s}, \mathrm{v}=-6 \frac{\mathrm{~m}}{\mathrm{~s}}$;

$\Rightarrow x_{f}=25+(-10) \Delta t+\Delta t^{2} \Rightarrow x_{1 f}=25+(-10)(1)+1^{2}=16 m ; x_{2 f}=25+(-10)(2)+2^{2}=9 m$ $x_{3 f}=25+(-10)(3)+3^{2}=4 m ; x_{4 f}=25+(-10)(4)+4^{2}=1 m ; x_{5 f}=25+(-10)(5)+5^{2}=0 m$

