

Flipping Physics Lecture Notes: Summing the Forces is Vector Addition

We just completed a problem where we found the net force caused by three forces.
Known Values: $\stackrel{\rightharpoonup}{F}_{K}=270 N E ; \stackrel{\rightharpoonup}{F}_{J}=130 N S ; \vec{F}_{C}=260 N @ 33^{\circ} W$ of $N ; \sum \stackrel{\rightharpoonup}{F}=$? ($\mathrm{K}=$ Ken, $\mathrm{J}=$ Jim, $\mathrm{C}=$ Chris)

We drew the free body diagram.
Broke the force of Chris in to its components.
$F_{C y}=218.054 \mathrm{~N} \& F_{C x}=141.606 \mathrm{~N}$
Redrew the Free Body Diagram:
Determined the net force in the $\mathrm{x} \& \mathrm{y}$ directions:
$\sum F_{x}=128.394 N \& \sum F_{y}=88.054 N$
Used the Pythagorean theorem to solve for the magnitude of the net force.
$\sum F=155.687 \approx 160 N$

And found the net force.
$\phi=\tan ^{-1}\left(\frac{88.054}{128.394}\right)=34.4429 \approx 34^{\circ}$
$\sum \vec{F} \approx 160 N @ 34^{\circ} N$ of E
(Clearly the above is just a summary. Please see the previous video for a complete solution. http://www.flippingphysics.com/three-force-example.html)

Even though it doesn't quite look like it, summing the forces is vector addition. So let's do the problem visually as tip-to-tail vector addition:

Or you can include the components of the force of Chris instead.
$\sum \vec{F}=\vec{F}_{K}+\vec{F}_{J}+\vec{F}_{C X}+\vec{F}_{C y}$ (right diagram)

Remember the order of the vectors is irrelevant so we could add the vectors in different orders.
$\sum \vec{F}=\vec{F}_{C}+\vec{F}_{K}+\vec{F}_{J} \quad$ (left diagram)
or $\sum \stackrel{\rightharpoonup}{F}=\vec{F}_{J}+\stackrel{\rightharpoonup}{F}_{K}+\vec{F}_{C}$ (right diagram)
and we always get the same net force as before.

We could even solve this problem using a data table like we did when we introduced vector addition: (http://www.flippingphysics.com/data-table.html)

Vector:	x-direction (N)	y-direction (N)
\vec{F}_{K}	270	0
\vec{F}_{C}	-141.606	218.054
\vec{F}_{J}	0	-130
$\sum F$	$\sum F_{x}=270-141.606+0=128.394 N$	$\sum_{y}=0+218.054-130=88.054 \mathrm{~N}$

So, it may not look like it at first, but summing the forces is simply another way to do vector addition.

