

Flipping Physics Lecture Notes:
Using Newton's Second Law to find the Force of Friction

We haven't defined the Force of Friction " yet, however, we can still solve for its magnitude.

Example Problem: You slide a 56 gram street hockey puck on a wooden board. The graph of its velocity as a function of time is shown. What is the magnitude of the force of friction between the puck and the wooden board?

The best-fit line or trendline of the velocity as a
function of time graph is $v=(4.38 t-2.77) \frac{\mathrm{m}}{\mathrm{s}}$

This line equation is in the slope intercept form or $y=m x+b$, which means the slope of the line or $m=4.38$ and the y-intercept or $b=-2.77$. Remember the slope of a velocity versus time graph is acceleration:
slope $=m=\frac{\text { rise }}{\text { run }}=\frac{\Delta y}{\Delta x}=\frac{\Delta v}{\Delta t}=a=4.38 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
The y-intercept is the initial velocity: $v_{i}=-2.77 \frac{\mathrm{~m}}{\mathrm{~s}}$

Draw the free body diagram to solve for the force of friction.
Sum the forces in the x-direction:
$\sum F_{x}=F_{f}=m a_{x}=(56)(4.38)=245.28 N \times \frac{l l b}{4.448 N}=55.144 \mathrm{lb}$

Something must be wrong because the force of friction acting on an object with such a small mass shouldn't be that large! We didn't convert the puck
 mass to kg , which we need to do because Newtons are in $\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}$.
$m=56 \mathrm{~g} \times \frac{\mathrm{lkg}}{1000 \mathrm{~g}}=0.056 \mathrm{~kg}$
$\sum F_{x}=F_{f}=m a_{x}=(0.056)(4.38)=0.24528 \approx 0.25 \mathrm{~N}$

[^0]
[^0]: * Technically it is the force of kinetic friction. We will define static and kinetic friction in a later lesson.

