

Flipping Physics Lecture Notes:<br>AP Physics 1 Review of Electrostatics<br>https://www.flippingphysics.com/ap1-electrostatics-review.html

$A P^{\circledR}$ is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.
Elementary Charge: The smallest charge of an isolated particle. $e=1.6 \times 10^{=19} \mathrm{C}$

- Two examples: $q_{\text {electron }}=-e=-1.6 \times 10^{=19} \mathrm{C} \& q_{\text {proton }}=+e=+1.6 \times 10^{=19} \mathrm{C}$

The electron is a fundamental particle, however, the proton is not a fundamental particle.
Protons and neutrons are composed of "up" and "down" quarks: $q_{u p \text { quark }}=+\frac{2}{3} e \& q_{\text {down quark }}=-\frac{1}{3} e$

- Proton is composed of 2 "up" quarks and 1 "down" quark.

$$
\circ \quad q_{\text {proton }}=2 q_{u p \text { quark }}+1 q_{\text {down quark }}=2\left(+\frac{2}{3} e\right)+\left(-\frac{1}{3} e\right)=+\frac{4}{3} e-\frac{1}{3} e=+e
$$

- Neutron is composed of 1 "up" quark and 2 "down" quarks.

$$
\circ \quad q_{\text {neutron }}=l q_{u p \text { quark }}+2 q_{\text {down quark }}=\left(+\frac{2}{3} e\right)+2\left(-\frac{1}{3} e\right)=+\frac{2}{3} e-\frac{2}{3} e=0
$$

- A quark can have a charge less than the Elementary Charge because a single quark has never been isolated; quarks are always found in groups like they are in the proton and neutron.

The Law of Charges: Unlike charges attract and like charges repel. For example:

- Two positive charges repel one another \& two negative charges repel one another.
- A positive and a negative charge attract one another.

The force they repel or attract one another with is determine using Coulomb's Law: $F_{e}=\frac{k q_{1} q_{2}}{r^{2}}$

- This is called the Electrostatic Force. (Also sometimes called a Coulomb Force)
- Coulomb's Constant, $k=8.99 \times 10^{9} \frac{N \cdot m^{2}}{C^{2}}$
- $\mathrm{q}_{1} \& \mathrm{q}_{2}$ are the charges on the two charged particles.
- $r$ is not the radius, it is the distance between the centers of charge of the two charges. (Sometimes $r$ actually is the radius, however, that is not its definition.)
- Note the similarity to Newton's Universal Law of Gravitation: $F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
- However, comparing Coulomb's Constant to $G=6.77 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$ shows that Coulomb's

Constant is about $10^{20}$ times greater than the Gravitational Constant. In general, the electrostatic force is much, much, much greater than the gravitational force.

Conservation of Charge: In an isolated system the total charge stays constant. For example, if we start with two electrically isolated spheres, $q_{1 i}=+4 C \& q_{2 i}=-2 C$, we touch them together and pull them apart:
$q_{t}=q_{1 i}+q_{2 i}=+4 C+(-2 C)=+2 C \& q_{1 f}=q_{2 f}=q_{f} \Rightarrow q_{t}=q_{1 f}+q_{2 f}=q_{f}+q_{f}=2 q_{f} \Rightarrow q_{f}=\frac{q_{t}}{2}=\frac{+2 C}{2}=+1 C$
Each sphere ends up with $6.24 \times 10^{18}$ excess protons on it:
$q_{1}=n_{1} e \Rightarrow n_{1}=\frac{q_{1}}{e}=\frac{+1 C}{1.6022 \times 10^{-19} \mathrm{C} / \text { proton }} \approx 6.24 \times 10^{18}$ protons

