Flipping Physics Lecture Notes:
AP Physics 1 Review of Electricity
https://www.flippingphysics.com/ap1-electricity-review.html
AP^{\circledR} is a registered trademark of the College Board, which was not involved in the production of, and does not endorse, this product.

- Electric Current: The rate at which charges move.
- $I=\frac{\Delta q}{\Delta t} \Rightarrow \frac{C}{S}=$ Amperes, Amps, A
- Conventional current is the direction that positive charges "would" flow.
- Even though it is usually negative charges flowing in the negative direction.

- Resistance, R: A resistor restricts the flow of charges.
- $R=\frac{\rho \ell}{A} ; \rho=$ resistivity; $\ell=$ length of wire; $A=$ Cross Sectional Area R
- Resistivity is a material property.
- Electric Potential Difference, $\Delta V=\frac{\Delta P E_{\text {electrical }}}{q}$
- $\Delta V=I R \Rightarrow I=\frac{\Delta V}{R} \Rightarrow R=\frac{\Delta V}{I} \Rightarrow \frac{V}{A}=$ Ohm, Ω
- Two resistors in series:
- Using Kirchhoff's Loop Rule: $\Delta V_{\text {loop }}=0$

$$
\begin{aligned}
& I_{t}=I_{1}=I_{2} \& \Delta V_{\text {loop }}=0=\Delta V_{t}-\Delta V_{1}-\Delta V_{2} \Rightarrow \Delta V_{t}=\Delta V_{1}+\Delta V_{2} \\
& \Rightarrow I_{t} R_{\text {eq }}=I_{1} R_{1}+I_{2} R_{2} \Rightarrow R_{\text {eq }}=R_{1}+R_{2} \Rightarrow R_{\text {series }}=R_{1}+R_{2}+R_{3}+\ldots
\end{aligned}
$$

2 resistors in $\|$

- Two resistors in parallel:
- Using Kirchhoff's Junction Rule: $\sum I_{\text {in }}=\sum I_{\text {out }}$
- $\Delta V_{\text {loop }}=0=\Delta V_{t}-\Delta V_{1} \Rightarrow \Delta V_{t}=\Delta V_{1}$

- $\Delta V_{\text {loop }}=0=\Delta V_{t}-\Delta V_{2} \Rightarrow \Delta V_{t}=\Delta V_{2}$
$\circ \Rightarrow \Delta V_{t}=\Delta V_{1}=\Delta V_{2} \& \sum I_{\text {in }}=\sum I_{\text {out }} \Rightarrow I_{t}=I_{1}+I_{2}$
$\Rightarrow \frac{\Delta V_{t}}{R_{e q}}=\frac{\Delta V_{1}}{R_{1}}+\frac{\Delta V_{2}}{R_{2}} \Rightarrow \frac{1}{R_{e q}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Rightarrow R_{\|}=\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\ldots\right)^{-1}$
- Electric Power is the rate at which electric potential energy is being converted to heat and light. Also sometimes called the rate at which energy is dissipated in the circuit element.
- $P=I \Delta V$ (the only equation for electric power on the equation sheet)

$$
P=I \Delta V=I(I R)=I^{2} R=\left(\frac{\Delta V}{R}\right)^{2} R=\frac{\Delta V^{2}}{R} \Rightarrow P=I \Delta V=I^{2} R=\frac{\Delta V^{2}}{R}
$$

- Example Problem: Find the power dissipated in resistor \#2.

$$
R_{1}=1.0 \Omega, R_{2}=2.0 \Omega, R_{3}=3.0 \Omega, \Delta V_{t}=6.0 \mathrm{~V}, P_{2}=?
$$

- Resistors 2 and 3 are in parallel:

$$
\text { - } \quad R_{23}=\left(\frac{1}{R_{2}}+\frac{1}{R_{3}}\right)^{-1}=\left(\frac{1}{2}+\frac{1}{3}\right)^{-1}=1.2 \Omega
$$

- Resistors 1 and equivalent resistor 23 are in series:

$$
\circ \quad R_{e q}=R_{1}+R_{23}=1+1.2=2.2 \Omega
$$

- We can find the current through the battery, which is the same as the current through resistor 1:

$$
\circ \Delta V_{t}=I_{t} R_{e q} \Rightarrow I_{t}=\frac{\Delta V_{t}}{R_{e q}}=\frac{6}{2.2}=2 . \overline{7} \overline{2} \mathrm{~A}=I_{1}
$$

- We can now find the electric potential difference across resistor 1 :

$$
\circ \quad \Delta V_{1}=I_{1} R_{1}=(2 . \overline{7} \overline{2}) 1=2 . \overline{7} \overline{2} \mathrm{~V}
$$

- Now we can find the electric potential difference across equivalent resistor 23 , which is the same as the electric potential difference cross resistor 2 :

$$
\text { ○ } \Delta V_{t}=\Delta V_{1}+\Delta V_{23} \Rightarrow \Delta V_{23}=\Delta V_{t}-\Delta V_{1}=6-2 . \overline{7} \overline{2}=3 . \overline{2} \overline{7} V=\Delta V_{2}
$$

- We have what we need to find the electric power in resistor 2 :

$$
\text { ○ } \quad P_{2}=\frac{\left(\Delta V_{2}\right)^{2}}{R_{2}}=\frac{(3 . \overline{2} \overline{7})^{2}}{2}=5.35537 \approx 5.4 \frac{\mathrm{~J}}{\mathrm{~S}} \approx 5.4 \mathrm{watts}
$$

