

Flipping Physics Lecture Notes:
Does the Book Move?
An Introductory Friction Problem

Example Problem: You apply a horizontal force of 2.0 Newtons to a book with a mass of 0.674 kg . The values for the coefficients of friction between the book and the incline are $\mu_{\mathrm{s}}=0.27$ and $\mu_{\mathrm{k}}=0.24$.
(a) Does the book move? (b) What is the acceleration of the book?

$$
F_{a}=2.0 \mathrm{~N}(\text { horizontal }) ; m=0.674 \mathrm{~kg} ; \mu_{s}=0.27 ; \mu_{k}=0.24 ;
$$

(a) Does the book move?
(b) $a=$?

$$
\sum_{y} F_{y}=F_{N}-F_{g}=m a_{y}=m(0)=0 \Rightarrow F_{N}=F_{g}=m g
$$

$$
\sum F_{x}=F_{a}-F_{f}=m a_{x} \Rightarrow F_{a}-F_{s f_{\max }}=m a_{x} \Rightarrow F_{a}-\mu_{s} F_{N}=m a_{x} \Rightarrow F_{a}-\mu_{s} m g=m a_{x}
$$

$$
\Rightarrow 2-(0.27)(0.674)(9.81)=(0.674) a_{x} \Rightarrow 2-1.7852=0.674 a_{x}
$$

(a) Because the net force in the x-direciton is positive, the book will move to the right.
(b) Now that the book is moving, the friction is no longer static, it is kinetic.

$$
\begin{aligned}
& \sum F_{x}=F_{a}-F_{f}=m a_{x} \Rightarrow F_{a}-F_{k f}=F_{a}-\mu_{k} F_{N}=F_{a}-\mu_{k} m g=m a_{x} \Rightarrow a_{x}=\frac{F_{a}-\mu_{k} m g}{m} \\
& \Rightarrow a_{x}=\frac{2-(0.24)(0.674)(9.81)}{0.674}=0.61296 \approx 0.61 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
\end{aligned}
$$

