

Flipping Physics Lecture Notes:
Determining the Static Coefficient of Friction between Tires and Snow
Example: A car with anti-lock brakes driving on snow has an initial velocity of $8.9 \mathrm{~m} / \mathrm{s}$ and slows to a stop in 3.12 seconds. Determine the coefficient of friction between the tires and the snow.

Knowns: $v_{i}=8.9 \frac{m}{s} ; \Delta t=3.12 \mathrm{~s} ; v_{f}=0 ; \mu_{s}=?$
$\sum F_{y}=F_{N}-F_{g}=m a_{y}=m(0)=0 \Rightarrow F_{N}=F_{g}=m g$
$\sum F_{x}=-F_{s f}=m a_{x} \Rightarrow-\mu_{s} F_{N}=m a_{x} \Rightarrow-\mu_{s} m g=m a_{x}$
$\Rightarrow-\mu_{s} g=a_{x} \Rightarrow \mu_{s}=-\frac{a_{x}}{g}$

All we need is the acceleration in the x direction and we can use our Uniformly Accelerated Motion equations to find a_{x}.

$$
v_{f}=v_{i}+a \Delta t \Rightarrow v_{f}-v_{i}=a \Delta t \Rightarrow a=\frac{v_{f}-v_{i}}{\Delta t}=\frac{0-(8.9)}{3.12}=-2.85256 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

And we can now solve for the coefficient of friction.
$\mu_{s}=-\frac{a_{x}}{g}=-\frac{-2.85256}{9.81}=0.290781 \approx 0.29$

I actually did 9 trials and the average of all nine trials gave me: $\mu_{s_{\text {average }}}=0.299972 \approx 0.30$
FYI: $v_{i}=8.9 \frac{\mathrm{~m}}{\mathrm{~s}} \times \frac{3600 \mathrm{~s}}{\mathrm{lhr}} \times \frac{\mathrm{lmi}}{1609 \mathrm{~m}}=19.913 \approx 20 \frac{\mathrm{mi}}{\mathrm{hr}} \quad$ (okay, fine. With 2 sig figs: $v_{i} \approx 2.0 \times 10^{1} \frac{\mathrm{mi}}{\mathrm{hr}}$)

