

Flipping Physics Lecture Notes:
Physics "Magic Trick" on an Incline
First we need the incline angle:

$$
\sin \theta=\frac{O}{H}=\frac{15.9 \mathrm{~cm}}{70.5 \mathrm{~cm}} \Rightarrow \theta=\sin ^{-1}\left(\frac{15.9}{70.5}\right)=13.0342^{\circ}
$$

The mass of the block:
$m_{\text {block }}=121 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}=0.121 \mathrm{~kg}$

- Draw The Free Body Diagram.
- Break the Force of Gravity into its parallel and perpendicular components.
- Redraw the Free Body Diagram.

Newton's Second Law in both directions:
$\sum F_{\|}=F_{s f}-F_{g_{\|}}=m a_{\|}=m(0)=0 \Rightarrow F_{s f}=F_{g_{\|}}=m g \sin \theta$
$\Rightarrow F_{s f}=F_{g_{\|}}=(0.121)(9.81) \sin (13.0342)=0.267709 \approx 0.268 \mathrm{~N}$
$\sum F_{y}=F_{N}-F_{g_{\perp}}=m a_{\perp}=m(0)=0 \Rightarrow F_{N}=F_{g_{\perp}}=m g \cos \theta$
$\Rightarrow F_{N}=F_{g_{\perp}}=(0.121)(9.81) \cos (13.0342)=1.15643 \approx 1.16 \mathrm{~N}$
The "Magic Trick" math:
$m_{\|}=m \sin \theta=(121) \sin (13.0342)=27.2894 \approx 27.3 g$
$m_{\perp}=m \cos \theta=(121) \cos (13.0342)=117.883 \approx 118 g$
The "Floating Block" replaces the Force Normal with Force of Tension 1 and the Force of Static Friction with Force of Tension 2.

