

Flipping Physics Lecture Notes:

Average Power Delivered by a Car Engine - Example Problem

Example: A 1400 kg Prius uniformly accelerates from rest to $3.0 \times 10^{1} \mathrm{~km} / \mathrm{hr}$ in 9.25 seconds and 42 meters. If an average force of drag of 8.0 N acts on the car, what is the average power developed by the engine in horsepower?

Knowns:

$$
\begin{aligned}
& m=1400 \mathrm{~kg} ; v_{i}=0 ; \Delta t=9.25 \mathrm{sec} ; \Delta x=42 \mathrm{~m} ; v_{f}=30 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{\mathrm{lhr}}{3600 \mathrm{sec}} \times \frac{1000 \mathrm{~m}}{\mathrm{lkm}}=8 . \overline{3} \frac{\mathrm{~m}}{\mathrm{~s}} \\
& F_{\text {Drag }}=8.0 \mathrm{~N} ; P_{\text {average by engine }}=? \& P=\frac{W}{\Delta t}=F v \cos \theta
\end{aligned}
$$

We can use either of these equations because we are solving for average power. If the question asked for instantaneous power at a particular point along the trip, then we would need to use $P=F v \cos \theta$ and use instantaneous velocity in the equation.

Average power delivered by a car engine. Let's illustrate that using a force applied to the car.
And let's use the equation $P_{F_{a}}=\frac{W_{F_{a}}}{\Delta t}=\frac{F_{a} d \cos \theta}{\Delta t}$
Draw Free Body Diagram:

$\sum F_{x}=F_{a}-F_{D r a g}=m a_{x} \Rightarrow F_{a}=m a_{x}+F_{D r a g} \quad$ We need a_{x} to solve for F_{a}.
$a_{x}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{8 . \overline{3}-0}{9.25}=0.9009 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$F_{a}=m a_{x}+F_{D r a g}=(1400)(0.9009)+8.0=1269.26 \mathrm{~N}$
The force applied is to the right and the displacement is to the right, therefore the angle, θ, in the work equation is zero degrees. $\theta=0^{\circ}$.
$P_{F_{a}}=\frac{W_{F_{a}}}{\Delta t}=\frac{F_{a} d \cos \theta}{\Delta t}=\frac{(1269.26)(42) \cos (0)}{9.25}=5763.13 \mathrm{watts}$
$P_{F_{a}}=5763.13$ watts $\times \frac{\mathrm{lhp}}{746 \text { watts }}=7.7256 \approx 7.7 \mathrm{hp}$

Larger Acceleration Example:
$m=1400 \mathrm{~kg} ; v_{i}=0 ; \Delta t=5.43 \mathrm{sec} ; ; \Delta x=42 \mathrm{~m} ; v_{f}=56 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{\mathrm{lhr}}{3600 \mathrm{sec}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=15 . \overline{5} \frac{\mathrm{~m}}{\mathrm{~s}}$ $V_{f}=56 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{\mathrm{mi}}{1.609 \mathrm{~km}}=34.804 \approx 35 \frac{\mathrm{mi}}{\mathrm{hr}} ; F_{\text {Drag }}=26 \mathrm{~N} ; P_{\text {average by engine }}=$?
$a_{x}=\frac{\Delta v}{\Delta t}=\frac{v_{f}-v_{i}}{\Delta t}=\frac{15 . \overline{5}-0}{5.43}=2.86474 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \& F_{a}=m a_{x}+F_{\text {Drag }}=(1400)(2.86474)+26=4036.64 \mathrm{~N}$ $W_{F_{a}}=F_{a} d \cos \theta=(4036.64)(42) \cos (0)=169539 J \approx 170000 J$ (Larger Acceleration Example)
$W_{F_{a}}=F_{a} d \cos \theta=(1269.26)(42) \cos (0)=53309 \mathrm{~J} \approx 53000 \mathrm{~J}$ (Original, Smaller Acceleration Example)
$\& \frac{169539-53309}{53309} \times 100=218.03 \approx 220 \% \& \frac{5.43-9.25}{9.25} \times 100=-41.297 \approx-41 \%$
In other words, in order to decrease the time of the event by 41%, you need to use 220% more energy. That's a lot of unnecessary horses, hay and poop on the road.

