

Flipping Physics Lecture Notes:

Introductory Elastic Collision Problem Demonstration

Example: Cart 1 has a mass of 2 m and cart 2 has a mass of m. Cart 2 is initially at rest. Cart 1 is moving at $40.9 \mathrm{~cm} / \mathrm{s}$ when it collides elastically with cart 2 . If the speed of cart 1 after the collision is $13.4 \mathrm{~cm} / \mathrm{s}$, what is the speed cart 2 after the collision?
Knowns: $m_{1}=2 m ; m_{2}=m ; \vec{v}_{1 i}=40.9 \frac{\mathrm{~cm}}{\mathrm{~s}} ; \vec{v}_{1 f}=13.4 \frac{\mathrm{~cm}}{\mathrm{~S}} ; \vec{v}_{2 i}=0 ; \vec{v}_{2 f}=$?
Momentum is conserved during all collisions so: $\sum \vec{p}_{i}=\sum \vec{p}_{f} \Rightarrow m_{1} \vec{V}_{1 i}+m_{2} \vec{V}_{2 i}=m_{1} \vec{V}_{1 f}+m_{2} \vec{V}_{2 f}$
$\Rightarrow(2 m)(40.9)+(m)(0)=(2 m)(13.4)+(m) \vec{v}_{2 f} \Rightarrow(2)(40.9)=(2)(13.4)+\vec{v}_{2 f}$
$\Rightarrow \vec{v}_{2 f}=(2)(40.9)-(2)(13.4)=55 \frac{\mathrm{~cm}}{\mathrm{~S}} \Rightarrow v_{2 f} \approx 55.0 \frac{\mathrm{Cm}}{\mathrm{s}} \quad$ (predicted)
Measured is the slope of the line: $\vec{v}_{2 f}=52.8 \frac{\mathrm{Cm}}{\mathrm{S}}$ (measured)
Relative error for our velocity measurement: $E_{r}=\frac{O-A}{A} \times 100=\frac{52.8-55}{55} \times 100=-4 \approx-4.00 \%$
Is Kinetic Energy conserved? In other words: $\sum K E_{i}=\sum K E_{f} \Rightarrow \frac{\sum K E_{f}}{\sum K E_{i}}=1$
$\sum K E_{i}=\frac{1}{2} m_{1}\left(\vec{V}_{1 i}\right)^{2}+\frac{1}{2} m_{2}\left(\vec{V}_{2 i}\right)^{2}=\frac{1}{2}(2 m)(40.9)^{2}+\frac{1}{2}(m)(0)^{2}=1672.81 m$
$\sum K E_{f}=\frac{1}{2} m_{1}\left(\vec{V}_{1 f}\right)^{2}+\frac{1}{2} m_{2}\left(\vec{V}_{2 f}\right)^{2}=\frac{1}{2}(2 m)(13.4)^{2}+\frac{1}{2}(m)(52.8)^{2}=1573.48 m$
$\frac{\sum K E_{f}}{\sum K E_{i}}=\frac{1573.48 m}{1672.81 m}=0.94062 \Rightarrow 94.1 \%$ of the Kinetic Energy remains.

Mr. Becke's Point:

With the mass of the cart in base SI units of kilograms: $m=517 \mathrm{~g} \times \frac{1 \mathrm{~kg}}{1000 \mathrm{~kg}}=0.517 \mathrm{~kg}$
When we substitute that into the equation I gave for kinetic energy initial, we get strange units which are not joules:
$\sum K E_{i}=1672.81 \mathrm{~m}=(1672.81)(0.517)=864.84 J \Rightarrow\left(1672.81 \frac{\mathrm{~cm}^{2}}{\mathrm{~s}^{2}}\right)(0.517 \mathrm{~kg})$
Remember joules are $J=N \cdot m=\left(\frac{\mathrm{kg} \cdot \mathrm{m}}{\mathrm{s}^{2}}\right)(\mathrm{m})=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}^{2}}$

Mr.p points out it does not matter in this particular case because the dimensions cancel out:

$$
\frac{\sum K E_{f}}{\sum K E_{i}}=\frac{1573.48 \mathrm{~m}}{1672.81 \mathrm{~m}} \Rightarrow \frac{\mathrm{~kg} \cdot \mathrm{~cm}^{2} / \mathrm{s}^{2}}{\mathrm{~kg} \cdot \mathrm{~cm}^{2} / \mathrm{s}^{2}} \Rightarrow \%
$$

However, Mr. Becke is correct that it is better to get in to the habit of converting to base SI units when dealing with energy.

