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•  
o Torque is the cross product (also called the vector product) of  & . 

§ Torque is a vector! 
o  is the position vector from the axis of rotation to the location of the force, . 
o Magnitude of torque à  
o The order does matter! ( ) 
o Cross product is the area of the parallelogram with sides  & . 

• In case you forgot how to do the cross product. Example:  &  

 

 

 

• An object is in Translational Equilibrium if the net force acting on it equals zero, which means the 
object is not accelerating:  

• An object is in Rotational Equilibrium if the net torque acting on it equals zero, which means the 
object is not angularly accelerating:  (must identify axis of rotation) 

o This means the object is either not rotating or has a constant angular velocity. 
o If an object is in translational equilibrium and in rotational equilibrium about one axis of 

rotation, then the object is in rotational equilibrium about any axis of rotation. 
•  is Angular Momentum and it is a vector! 

o  

• For a particle or any object which is not rotating:  
o Just like torque, we have a cross product equation for angular momentum:  

§ r is the position vector from the axis of rotation to the location of the center of 
mass of the moving object. 

§ And a magnitude equation for angular momentum:  
• With this equation, need to use Right Hand Rule to find direction. 

o Yes, a particle or a rigid object which is not rotating can have an angular momentum! 
• For a rigid object with shape:  

o Units for angular momentum:  

• Derivation of conservation of linear momentum:  

• Derivation of conservation of angular momentum:  
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!
A ×
!
B =
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o Note the similarities between the two, please. 
o Remember net torque requires the axis of rotation to be identified, which means the axis 

of rotation needs to be identified for conservation of angular momentum 
• Conservation of Angular Momentum Example: A piece of gum with mass, m, and velocity, v, is 

spat at a solid cylinder of mass, M, radius, R, and moment of inertia . The cylinder is on a 

horizontal axis through its center of mass and is initially at rest. The line of action of the gum is 
located horizontally a height, y, above the axis of the cylinder. If the gum sticks to the cylinder, 
what is the final angular velocity of the gum/cylinder system? The Drawing!! 

o Gum knowns:      Cylinder knowns:  

o Solving for  (will be the same for both gum and cylinder) 

o Know angular momentum is conserved because:  

o 

 

o  

o  

o   

FYI: Sawdog, one of my Quality Control Team members, pointed out that, after colliding with the cylinder, 
the gum is moving in a circle, so it’s angular momentum can be described using . More specifically: 

 It’s a slightly different solution that results in the same answer. 
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