

Flipping Physics Lecture Notes:
AP Physics C: Rotational Dynamics Review - 2 of 2 (Mechanics) https://www.flippingphysics.com/apc-rotational-dynamics-2-review.html

- $\quad \vec{\tau}=\vec{r} \times \vec{F} \neq \vec{F} \times \vec{r}$
- Torque is the cross product (also called the vector product) of $\vec{r} \& \vec{F}$.
- Torque is a vector!
- $\quad \vec{r}$ is the position vector from the axis of rotation to the location of the force, \vec{F}.
- Magnitude of torque $\rightarrow \tau=r F \sin \theta$
- The order does matter! ($\vec{A} \times \vec{B}=-\vec{B} \times \vec{A}$)
- Cross product is the area of the parallelogram with sides $\vec{r} \& \vec{F}$.
- In case you forgot how to do the cross product. Example: $\vec{A}=-\hat{i}+\hat{j}-2 \hat{k}$ \& $\vec{B}=2 \hat{i}-3 \hat{j}+4 \hat{k}$

$$
\begin{aligned}
& \vec{A} \times \vec{B}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & -2 \\
2 & -3 & 4
\end{array}\right|=\left|\begin{array}{cc}
1 & -2 \\
-3 & 4
\end{array}\right| \hat{i}-\left|\begin{array}{cc}
-1 & -2 \\
2 & 4
\end{array}\right| \hat{j}+\left|\begin{array}{cc}
-1 & 1 \\
2 & -3
\end{array}\right| \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=[(1)(4)-(-2)(-3)] \hat{i}-[(-1)(4)-(-2)(2)] \hat{j}+[(-1)(-3)-(1)(2)] \hat{k} \\
& \Rightarrow \vec{A} \times \vec{B}=[4-6] \hat{i}-[-4+4] \hat{j}+[3-2] \hat{k}=-2 \hat{i}+\hat{k}
\end{aligned}
$$

- An object is in Translational Equilibrium if the net force acting on it equals zero, which means the object is not accelerating: $\sum \vec{F}=0=m \vec{a} \Rightarrow \vec{a}=0$
- An object is in Rotational Equilibrium if the net torque acting on it equals zero, which means the object is not angularly accelerating: $\sum \vec{\tau}=0=I \vec{\alpha} \Rightarrow \vec{\alpha}=0$ (must identify axis of rotation)
- This means the object is either not rotating or has a constant angular velocity.
- If an object is in translational equilibrium and in rotational equilibrium about one axis of rotation, then the object is in rotational equilibrium about any axis of rotation.
- $\quad \vec{L}$ is Angular Momentum and it is a vector!

$$
\quad \sum \stackrel{\rightharpoonup}{F}=m \stackrel{\rightharpoonup}{a} \Rightarrow \sum \stackrel{\rightharpoonup}{\tau}=I \stackrel{\rightharpoonup}{\alpha} \& \sum \stackrel{\rightharpoonup}{F}=\frac{d \stackrel{\rightharpoonup}{p}}{d t} \Rightarrow \sum \stackrel{\rightharpoonup}{\tau}=\frac{d \stackrel{\rightharpoonup}{L}}{d t}
$$

- For a particle or any object which is not rotating:
- Just like torque, we have a cross product equation for angular momentum: $\vec{L}=\vec{r} \times \vec{p}$
- r is the position vector from the axis of rotation to the location of the center of mass of the moving object.
- And a magnitude equation for angular momentum: $L=r m v \sin \theta$
- With this equation, need to use Right Hand Rule to find direction.
- Yes, a particle or a rigid object which is not rotating can have an angular momentum!
- For a rigid object with shape: $\vec{L}=I \vec{\omega}$
- Units for angular momentum: $\vec{L}=I \vec{\omega} \Rightarrow\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)\left(\frac{\mathrm{rad}}{\mathrm{s}}\right)=\frac{\mathrm{kg} \cdot \mathrm{m}^{2} \cdot \mathrm{rad}}{\mathrm{s}}=\frac{\mathrm{kg} \cdot \mathrm{m}^{2}}{\mathrm{~s}}$
- Derivation of conservation of linear momentum: $\sum \vec{F}_{\text {external }}=\frac{d \vec{p}}{d t}=0 \Rightarrow \sum \stackrel{\rightharpoonup}{p}_{i}=\sum \stackrel{\rightharpoonup}{p}_{f}$
- Derivation of conservation of angular momentum: $\sum \vec{\tau}_{\text {external }}=\frac{d \vec{L}}{d t}=0 \Rightarrow \sum \vec{L}_{i}=\sum \vec{L}_{f}$
- Note the similarities between the two, please.
- Remember net torque requires the axis of rotation to be identified, which means the axis of rotation needs to be identified for conservation of angular momentum
- Conservation of Angular Momentum Example: A piece of gum with mass, m, and velocity, v, is spat at a solid cylinder of mass, M, radius, R, and moment of inertia $\frac{1}{2} M R^{2}$. The cylinder is on a horizontal axis through its center of mass and is initially at rest. The line of action of the gum is located horizontally a height, y, above the axis of the cylinder. If the gum sticks to the cylinder, what is the final angular velocity of the gum/cylinder system? The Drawing!!
- Gum knowns: $m=m_{g}, v=v_{g i} \quad$ Cylinder knowns: $M=m_{c}, \omega_{i c}=0, R, I_{c}=\frac{1}{2} m_{c} R^{2}$
- Solving for $\omega_{f}=$? (will be the same for both gum and cylinder)
- Know angular momentum is conserved because: $\sum \vec{\tau}_{\text {external }}=\frac{d \vec{L}}{d t}=0$
- $\sum \vec{L}_{i}=\sum \vec{L}_{f} \Rightarrow \vec{L}_{g i}+\vec{L}_{c i}=\vec{L}_{g f}+\vec{L}_{c f} \Rightarrow r_{g i} m_{g} V_{g i} \sin \theta_{g i}+0=r_{g f} m_{g} V_{g f} \sin \theta_{g f}+I_{c} \omega_{f}$

○ $\sin \theta_{g i}=\frac{O}{H}=\frac{y}{r_{g i}} \Rightarrow y=r_{g i} \sin \theta_{g i} \Rightarrow y m_{g} v_{g i}=r_{g f} m_{g} v_{g f} \sin \theta_{g f}+I_{c} \omega_{f}$

- $v_{g f}=v_{t}=R \omega_{f} \Rightarrow y m_{g} V_{g i}=R m_{g} R \omega_{f} \sin 90+\frac{1}{2} m_{c} R^{2} \omega_{f}$
$0 \Rightarrow y m_{g} V_{g i}=R^{2} \omega_{f}\left(m_{g}+\frac{m_{c}}{2}\right) \Rightarrow \omega_{f}=\frac{y m_{g} V_{g i}}{R^{2}\left(m_{g}+\frac{m_{c}}{2}\right)}$
FYI: Sawdog, one of my Quality Control Team members, pointed out that, after colliding with the cylinder, the gum is moving in a circle, so it's angular momentum can be described using $I_{g} \omega_{f}$. More specifically: $\vec{L}_{g f}=I_{g} \omega_{f}=\left(m_{g} r_{g}^{2}\right) \omega_{f}=m_{g} R^{2} \omega_{f}$ It's a slightly different solution that results in the same answer.

