

Flipping Physics Lecture Notes:

AP Physics C: Rotational vs. Linear Review (Mechanics)

https://www.flippingphysics.com/apc-rotational-vs-linear-review.html

Name:	Linear:	Rotational:
Displacement	$\Delta \bar{\mathbf{x}} = \mathbf{x}_f - \mathbf{x}_i$	$\Delta \vec{\theta} = \theta_{_f} - \theta_{_i}$
Velocity	$\vec{v}_{avg} = \frac{\Delta \vec{x}}{\Delta t} \& \vec{v}_{inst} = \frac{d\vec{x}}{dt}$	$\vec{\omega}_{avg} = \frac{\Delta \vec{\theta}}{\Delta t} \& \vec{\omega}_{inst} = \frac{d\vec{\theta}}{dt}$
Acceleration	$\vec{a}_{avg} = \frac{\Delta \vec{v}}{\Delta t} \& \vec{a}_{inst} = \frac{d\vec{v}}{dt}$	$\vec{\alpha}_{avg} = \frac{\Delta \vec{\omega}}{\Delta t} \& \vec{\alpha}_{inst} = \frac{d\vec{\omega}}{dt}$
Uniformly Accelerated Motion (UAM) or	$v_{f} = v_{i} + at$ $x_{f} = x_{i} + v_{i}t + \frac{1}{2}at^{2}$ $v_{f}^{2} = v_{i}^{2} + 2a(x_{f} - x_{i})$	$\omega_f = \omega_i + \alpha t$ $\theta_f = \theta_i + \omega_i t + \frac{1}{2} \alpha t^2$ $\omega_f = \omega_i + 2\alpha (\theta_f - \theta_i)$
<u>U</u> niformly <u>A</u> ngularly <u>A</u> ccelerated <u>M</u> otion (UαM)	$x_f - x_i = \frac{1}{2} (v_f + v_i)t$	$\theta_f - \theta_i = \frac{1}{2} \left(\omega_f + \omega_i \right) t$
Mass	Mass	$I_{particles} = \sum_{i} m_{i} r_{i}^{2}$ $I_{object \ with \ shape} = \int r^{2} dm$
Kinetic Energy	$KE_{translational} = \frac{1}{2} mv^2$	$KE_{rotational} = \frac{1}{2}I\omega^2$
Newton's Second Law	$\sum \vec{F} = m\vec{a} \& \sum \vec{F} = \frac{d\vec{p}}{dt}$	$\sum \vec{\tau} = I\vec{\alpha} \& \sum \vec{\tau} = \frac{d\vec{L}}{dt}$
Force / Torque	Force	$\vec{\tau} = \vec{r} \times \vec{F}$
Power	$P_{translational} = \frac{dW}{dt} = \vec{F} \cdot \vec{v}$	$P_{rotational} = \frac{dW}{dt} = \bar{\tau} \cdot \bar{\omega}$
Momentum	$\vec{p} = m\vec{v}$	$egin{aligned} ec{L}_{particle} &= ec{r} imes ec{p} \ ec{L}_{object\ with\ shape} &= I ec{\omega} \end{aligned}$

Thank you to Aarti Sangwan for pointing out that I didn't include a rotational form of work in the video.

Name:	Linear:	Rotational:
Work (constant force)	$m{W} = m{F} \cdot \Delta m{r} = m{F} \Delta m{r} \cos heta$	$oldsymbol{W} = ar{ au} \cdot \Delta ar{ heta}$
Work (non-constant force)	$W = \int_{x_i}^{x_f} F_x dx$	$oldsymbol{W} = \int_{ heta_i}^{ heta_i} au extbf{d} heta$
Net Work-Kinetic Energy Theorem	$W_{net} = \Delta KE = \frac{1}{2} m v_f^2 - \frac{1}{2} m v_i^2$	$W_{net} = \Delta KE = \frac{1}{2}I\omega_f^2 - \frac{1}{2}I\omega_i^2$

A little bonus: Look what happens when we combine a couple of the above formulas:

$$\textit{\textbf{W}}_{\text{net}} = \bar{\tau}_{\text{net}} \cdot \Delta \bar{\theta} = \textit{\textbf{I}} \alpha \Delta \theta = \frac{1}{2} \textit{\textbf{I}} \omega_{\text{\tiny f}}^{\ 2} - \frac{1}{2} \textit{\textbf{I}} \omega_{\text{\tiny i}}^{\ 2} \Rightarrow 2\alpha \Delta \theta = \omega_{\text{\tiny f}}^{\ 2} - \omega_{\text{\tiny i}}^{\ 2} \Rightarrow \omega_{\text{\tiny f}}^{\ 2} = \omega_{\text{\tiny i}}^{\ 2} + 2\alpha \Delta \theta \ \ (\text{U}\alpha \text{M!})$$