

Flipping Physics Lecture Notes:
Defining Pi for Physics
Common student answers to the question, "What is π ?"

- A number
- 3
- 3.1
- 3.14
- $\sim 3.141592653589793238462643383279502884197169399375105820974944592307816406286$
- An irrational number
- Something good to eat

By definition pi is the ratio of a circle's circumference to its diameter:

- $\pi=\frac{C}{D}=3.14159 \ldots$
- Which we can rearrange $\Rightarrow C=\pi D=\pi(2 r) \Rightarrow C=2 \pi r$ to get the equation for circumference
- The equation for circumference is just a restatement of the definition of π

Frisbee example: $\pi=\frac{C}{D}=\frac{86.9 \mathrm{~cm}}{27.5 \mathrm{~cm}}=3.16 \approx 3.14159 \ldots$

- In other words π has no units, it is dimensionless
- We give this ratio a specific name, it is called radians
- $\frac{C}{D}=\pi$ radians
- π is in radians and radians are dimensionless.
- π radians represent the ratio of the circumference to the diameter of every circle.
- Radians are a placeholder and we will use this fact repeatedly in physics.

1 revolution $=360^{\circ}=2 \pi$ radians

- Know this!!
- Note: 1 revolution $=2$ radians
- For some reason students often simply leave the π out, don't be that student.

Abbreviations:

- $r=$ radius
- \quad rad = radians
- do NOT use r for radians, r is for radius, rad is for radians.
- $s=r \Delta \theta=(1.5 m)(2 \pi r)$ leads to r confusion, $s=r \Delta \theta=(1.5 m)(2 \pi \mathrm{rad})$ does not.

