

Flipping Physics Lecture Notes:

Defining Pi for Physics

Common student answers to the question, "What is π ?"

- A number
- 3
- 3.1
- 3.14
- ~3.141592653589793238462643383279502884197169399375105820974944592307816406286
- An irrational number
- Something good to eat

By definition pi is the ratio of a circle's circumference to its diameter:

•
$$\pi = \frac{C}{D} = 3.14159...$$

- Which we can rearrange $\Rightarrow C = \pi D = \pi (2r) \Rightarrow C = 2\pi r$ to get the equation for circumference
- The equation for circumference is just a restatement of the definition of π

Frisbee example:
$$\pi = \frac{C}{D} = \frac{86.9 cm}{27.5 cm} = 3.16 \approx 3.14159...$$

The units for π are ...

•
$$\pi = \frac{C}{D} \Rightarrow \frac{meters}{meters} = 1$$

- In other words π has no units, it is dimensionless
- We give this ratio a specific name, it is called *radians*

•
$$\frac{C}{D} = \pi$$
 radians

- π is in radians and radians are dimensionless.
- π radians represent the ratio of the circumference to the diameter of every circle.
- Radians are a placeholder and we will use this fact repeatedly in physics.

1 revolution = $360^\circ = 2\pi$ radians

- Know this!!
- Note: 1 *revolution* \neq 2 *radians*
 - For some reason students often simply leave the π out, don't be *that* student.

Abbreviations:

- r = radius
- rad = radians
 - $\circ~$ do NOT use r for radians, r is for radius, rad is for radians.

$$\circ$$
 $s = r\Delta\theta = (1.5m)(2\pi r)$ leads to r confusion, $s = r\Delta\theta = (1.5m)(2\pi rad)$ does not.

