

Flipping Physics Lecture Notes:
Introductory Arc Length Problem Gum on a Bike Tire

Example Problem: How far does a piece of gum stuck to the outside of a 67 cm diameter wheel travel while the wheel rotates through 149° ?

Knowns: $D=67 \mathrm{~cm} ; ~ r=\frac{D}{2}=\frac{67 \mathrm{~cm}}{2}=33.5 \mathrm{~cm} ; \Delta \theta=149^{\circ}\left(\frac{2 \pi \text { radians }}{360^{\circ}}\right)=2.6005$ radians; $s=$?
Suggestion: Whenever the diameter is given in a physics problem, immediately determine the radius as well. Too often I have seen students use the diameter as the radius.

$$
s=r \Delta \theta=(33.5)(2.6005)=87.118 \approx 87 \mathrm{~cm}
$$

Units: $s=r \Delta \theta \Rightarrow c m \cdot r a d=c m$

Radians have no units and are just a placeholder. The radians drop
 out because we no longer need them as a placeholder. If we had left the angular displacement in degrees, the units for arc length would work out to be in $\mathrm{Cm} \bullet^{\circ}$ which makes no sense.

