

Flipping Physics Lecture Notes:
Introductory Centripetal Force Problem

Car over a Hill

Example: A 453 g toy car moving at $1.05 \mathrm{~m} / \mathrm{s}$ is going over a semi-circular hill with a radius of 1.8 m . When the car is at the top of the hill, what is the magnitude of the force from the ground on the car?

Knowns: $m=453 g\left(\frac{\mathrm{lkg}}{1000 \mathrm{~g}}\right)=0.453 \mathrm{~kg} ; v_{t}=1.05 \frac{\mathrm{~m}}{\mathrm{~s}} ; r=1.8 \mathrm{~m} ; F_{n}=$?
$\sum F_{i n}=F_{g}-F_{N}=m a_{c} \Rightarrow m g-F_{N}=m \frac{v_{t}{ }^{2}}{r}$
$\Rightarrow-F_{N}=-m g+m \frac{v_{t}^{2}}{r} \Rightarrow F_{N}=m g-m \frac{v_{t}^{2}}{r}$
$F_{n}=(0.453)(9.81)-(0.453)\left(\frac{1.05^{2}}{1.8}\right)=4.1665 \approx 4.2 N$

Note: The force causing the circular motion, the Centripetal Force, or the net force in the in-direction, in this case is the Force of Gravity minus the Force Normal. $\sum F_{i n}=F_{g}-F_{N}$

Also note: $F_{g}=m g=(0.453)(9.81)=4.444 \approx 4.4 N \Rightarrow F_{N}<F_{g}$
In other words, as you go over a hill in a car, you feel as if you weigh less. And the faster you move, the smaller the force normal, and the lighter you feel.

