

Flipping Physics Lecture Notes:
Determining the Force Normal on a Toy Car moving up a Curved Hill
Example: A 0.453 kg toy car moving at $1.15 \mathrm{~m} / \mathrm{s}$ is going up a semi-circular hill with a radius of 0.89 m . When the hill makes an angle of 32° with the horizontal, what is the magnitude of the force normal on the car?

Knowns: $m=0.453 \mathrm{~kg} ; \mathrm{v}_{t}=1.15 \frac{\mathrm{~m}}{\mathrm{~s}} ; r=0.89 \mathrm{~m} ; \theta=32^{\circ} ; F_{N}=$?
Draw FBD:
Break forces into components (in-direction and parallel to in-direction)

$$
F_{g_{\perp}}=m g \cos \theta \& F_{g_{\|}}=m g \sin \theta
$$

Re-draw FBD:

$$
\begin{aligned}
& \sum F_{i n}=F_{N}-F_{g_{\perp}}=m a_{c} \Rightarrow F_{N}=F_{g_{\perp}}+m a_{c}=m g \cos \theta+m \frac{v_{t}^{2}}{r} \\
& \Rightarrow F_{N}=(0.453)(9.81) \cos (32)+(0.453) \frac{1.15^{2}}{0.89}=4.3804 \approx 4.4 \mathrm{~N}
\end{aligned}
$$

