Example: What is the minimum angular speed necessary to keep water in a vertically revolving bucket? The rope radius is 0.77 m .
$\sum F_{i n}=F_{g}+F_{T}=m a_{c} \Rightarrow m g+0=m r \omega^{2} \Rightarrow g=r \omega^{2}$
At the "minimum angular speed necessary to keep water in a vertically revolving bucket" the tension in the rope is reduced to zero. At this angular speed the centripetal force is just the force of gravity.
$\Rightarrow \omega^{2}=\frac{g}{r} \Rightarrow \omega=\sqrt{\frac{g}{r}}=\sqrt{\frac{9.81}{0.77}}=3.5694 \approx 3.6 \frac{r a d}{s}$

