

Flipping Physics Lecture Notes:

A Tale of Three Accelerations

or
The Differences between Angular, Tangential, and Centripetal Accelerations https://www.flippingphysics.com/3-accelerations.html

An object moving in a circle can have three different types of accelerations:

- Angular Acceleration: $\alpha=\frac{\Delta \omega}{\Delta t}$ in $\frac{r a d}{s^{2}}$ is an angular quantity.
- Tangential Acceleration: $a_{t}=r \alpha$ in $\frac{m}{s^{2}}$ is a linear quantity.
- Centripetal Acceleration: $a_{c}=\frac{v_{t}^{2}}{r}=r \omega^{2}$ in $\frac{m}{S^{2}}$ is a linear quantity.

Angular acceleration separates itself from the others:

1) Because it is an angular quantity, whereas the other two are linear quantities.
2) Because angular acceleration applies to the whole rigid object, however, tangential acceleration and centripetal acceleration are for a specific radius.

A major difference between tangential acceleration and centripetal acceleration is their direction.

- Centripetal means "center seeking". Centripetal acceleration is always directed inward.
- Tangential acceleration is always directed tangent to the circle.
- By definition, tangential acceleration and centripetal acceleration are perpendicular to one another.

Another major difference between tangential acceleration and centripetal acceleration is that circular motion cannot exist without centripetal acceleration.

- No centripetal acceleration means the object is not moving in a circle.
- Centripetal acceleration results from the change in direction of the tangential velocity. If the tangential velocity is not changing directions, then the object is not moving in a circle.
- Tangential acceleration results from the change in magnitude of the tangential velocity of an object. An object can move in a circle and not have any tangential acceleration. No tangential acceleration simply means the angular acceleration of the object is zero and the object is moving with a constant angular velocity.

$$
\text { - } \alpha=\frac{\Delta \omega}{\Delta t}=\frac{0}{\Delta t}=0 \Rightarrow a_{t}=r \alpha=r(0)=0
$$

For more about circular motion (rotational kinematics) please visit:
http://www.flippingphysics.com/algebra.html\#cm

