

Flipping Physics Lecture Notes:

Conical Pendulum Demonstration and Problem
Example: Two spheres attached to a horizontal support are rotating with a constant angular velocity. Determine the angular velocity.
As shown in the figure: $L=9.7 \mathrm{~cm}, \mathrm{x}=3.4 \mathrm{~cm}$ and $\theta=43^{\circ}$.
Known:
$\omega=? ; \quad x=3.4 \mathrm{~cm}\left(\frac{\mathrm{~lm}}{100 \mathrm{~cm}}\right)=0.034 \mathrm{~m} ; L=9.7 \mathrm{~cm}\left(\frac{\mathrm{~lm}}{100 \mathrm{~cm}}\right)=0.097 \mathrm{~m} ; \theta=43^{\circ}$

$\sin \theta=\frac{O}{H}=\frac{F_{T_{i n}}}{F_{T}} \Rightarrow F_{T_{i n}}=F_{T} \sin \theta \& \cos \theta=\frac{A}{H}=\frac{F_{T_{y}}}{F_{T}} \Rightarrow F_{T_{y}}=F_{T} \cos \theta$

$\sum F_{y}=F_{T_{y}}-F_{g}=m a_{y} \Rightarrow F_{T} \cos \theta-m g=m(0)=0 \Rightarrow F_{T} \cos \theta=m g \Rightarrow F_{T}=\frac{m g}{\cos \theta}$
$\sum F_{i n}=F_{T_{\text {in }}}=m a_{c} \Rightarrow F_{T} \sin \theta=m r \omega^{2} \Rightarrow \frac{m g}{\cos \theta} \sin \theta=m r \omega^{2} \Rightarrow g \tan \theta=r \omega^{2}$
$\Rightarrow \omega^{2}=\frac{g \tan \theta}{r} \Rightarrow \omega=\sqrt{\frac{g \tan \theta}{r}}$
Need r: $r=L_{\text {in }}+x$ therefore we need $\mathrm{L}_{\text {in }}$

$\sin \theta=\frac{O}{H}=\frac{L_{i n}}{L} \Rightarrow L_{\text {in }}=L \sin \theta \& \quad r=L_{i n}+x=L \sin \theta+x$
$\Rightarrow \omega=\sqrt{\frac{g \tan \theta}{L \sin \theta+x}}=\sqrt{\frac{(9.81) \tan (43)}{(0.097) \sin (43)+0.034}}= \pm 9.55716 \approx-9.6 \frac{\mathrm{rad}}{\mathrm{s}}$

According to the right hand rule, the direction of the angular velocity and angular displacement of the spheres is down, which is negative.

$$
\omega_{\text {measured }}=\frac{\Delta \theta}{\Delta t}=\frac{-2 \pi \mathrm{rad}}{0.66 \mathrm{~s}}=-3 \pi \frac{\mathrm{rad}}{\mathrm{~s}}=-9.51998 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

Use the measured value as our observed value and the predicted value as our accepted value:
$E_{r}=\frac{O-A}{A} \times 100=\frac{-9.55716-(-9.51998)}{-9.51998} \times 100=-0.39052 \approx-0.39 \%$

