

Remember: Force of Gravity and Weight mean the same thing. The equation we already have for this is:

- $F_{g}=m g$

However, this is missing a subscript that has been assumed up until this point:

- $F_{g}=m_{o} g: m_{o}$ means the mass of the object. This equation is for the Force of Gravity that
exists between and object and a planet. Usually for us the planet is the Earth. $g_{\text {Earth }}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Truth is that a force of gravitational attraction exists between any two objects. The equation to determine this force of gravitational attraction is Newton's Universal Law of Gravitation:
- $F_{g}=\frac{G m_{1} m_{2}}{r^{2}}$
- G is the Universal Gravitational Constant. $G=6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}$
- I call this The Big G Equation!
- $\quad m_{1}$ and m_{2} are the masses of the two objects.
- r is not defined as the radius.
- r is the distance between the centers of mass of the two objects.
- r sometimes is the radius.
- Equation was established by Sir Isaac Newton in 1687.
- Not until 1796 was the Universal Gravitational Constant first measured by British Scientist Henry Cavendish. He used a large torsion balance to measure G.

The cans of dog food example with the forces on can \#4 highlighted:

An interesting point: According to The University of Oxford Department of Physics, ${ }^{\wedge}$ "Cavendish used the balance in 1798 and measured the mean density of the earth at $5.48 \mathrm{~g} / \mathrm{cm} 3$. This implied that G was $6.754 \times 10-11 \mathrm{~m} 3 \mathrm{~s}-2 \mathrm{~kg}-1$ although Cavendish did not derive it." Therefore Cavendish actually never calculated G. I apologize for this oversight! Thank you to Dan Burns @kilroi22 for pointing out this error.

[^0]
[^0]: ^ http://www.physics.ox.ac.uk/history.asp?page=BigGHis

