

Flipping Physics Lecture Notes:
The Force of Gravitational Attraction between the Earth and the Moon https://www.flippingphysics.com/earth-moon-gravity.html

Example: According to NASA, the mass of the Earth is $5.97 \times 10^{24} \mathrm{~kg}$, the mass of the Moon is $7.3 \times 10^{22}$ kg , and the mean distance between the Earth and the Moon is $3.84 \times 10^{8} \mathrm{~m} .{ }^{.}$What is the force of gravitational attraction between the Earth and the Moon?

Knowns: $m_{\text {Earth }}=5.97 \times 10^{24} \mathrm{~kg} ; m_{\text {Moon }}=7.3 \times 10^{22} \mathrm{~kg} ; R_{E-M}=3.84 \times 10^{8} \mathrm{~m} ; F_{g}=$ ?
$F_{g}=\frac{G m_{1} m_{2}}{r^{2}}=\frac{G m_{E} m_{M}}{R_{E-M}^{2}}=\frac{\left(6.67 \times 10^{-11}\right)\left(5.97 \times 10^{24}\right)\left(7.3 \times 10^{22}\right)}{\left(3.84 \times 10^{8}\right)^{2}}$
$\Rightarrow F_{g}=1.97134 \times 10^{20} \approx 2.0 \times 10^{20} \mathrm{~N}$

There are a number of things wrong with the following calculations:
$\sum F_{\text {moon }}=F_{E M}=m_{m} a_{m} \Rightarrow a_{m}=\frac{F_{E M}}{m_{m}}=\frac{1.97134 \times 10^{20}}{7.3 \times 10^{22}}=0.0027005 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \approx 0.0027 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
$\Delta x=v_{i} \Delta t+\frac{1}{2} a \Delta t^{2} \Rightarrow 3.84 \times 10^{8}=(0) \Delta t+\frac{1}{2}(0.0027005) \Delta t^{2}$
$\Rightarrow \Delta t=\sqrt{\frac{(2)\left(3.84 \times 10^{8}\right)}{0.0027005}}=533288 \mathrm{sec}\left(\frac{\mathrm{lhr}}{3600 \mathrm{sec}}\right)\left(\frac{\mathrm{lday}}{24 \mathrm{hr}}\right)=6.17231 \approx 6.2 \mathrm{days}$
It is important you understand what is wrong with them though...
I'd watch the video because I detail what is wrong with the above calculations there.
Also, if you want to learn more about Universal Gravitation, please visit: http://www.flippingphysics.com/algebra.html\#ug

[^0]
[^0]:    - https://nssdc.gsfc.nasa.gov/planetary/factsheet/

