Previously we derived equations for position, velocity, and acceleration of an object in simple harmonic motion: $x(t)=A \cos (\omega t+\phi) ; v(t)=-A \omega \sin (\omega t+\phi) ; a(t)=-A \omega^{2} \cos (\omega t+\phi)$

Angular frequency, ω, derivation: $f=\frac{1}{T} \& \omega=\frac{\Delta \theta}{\Delta t}=\frac{2 \pi}{T}=2 \pi f$
For our graphs, we are going to assume the phase constant, ϕ, is zero. In other words the graphs will not be phase shifted on the horizontal axis.

$\vec{V}=\frac{d \stackrel{\rightharpoonup}{x}}{d t} \Rightarrow$ velocity $=$ slope of position vs. time

$$
\stackrel{\rightharpoonup}{\mathrm{a}}=\frac{d \stackrel{\rightharpoonup}{v}}{d t} \Rightarrow \text { acceleration }=\text { slope of velocity vs. time }
$$

