

Flipping Physics Lecture Notes:

Simple Harmonic Motion – Graphs of Position, Velocity and Acceleration

Previously we derived equations for position, velocity, and acceleration of an object in simple harmonic motion: $x(t) = A\cos(\omega t + \phi)$; $v(t) = -A\omega\sin(\omega t + \phi)$; $a(t) = -A\omega^2\cos(\omega t + \phi)$

Angular frequency, ω , derivation: $f = \frac{1}{T} \& \omega = \frac{\Delta \theta}{\Delta t} = \frac{2\pi}{T} = 2\pi f$

For our graphs, we are going to assume the phase constant, ϕ , is zero. In other words the graphs will not be phase shifted on the horizontal axis.

