

The equation for the position of the center of mass of a system of particles is:

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+\ldots}{m_{1}+m_{2}+\ldots}
$$

Where " $m$ " is the mass of each object and " $x$ " is the distance each object is from a zero reference point. The ellipses (...) mean you add as many expressions as you have objects in the system.

Example: Three point objects are located at various locations on a Cartesian coordinate system. Mass 1 , with a mass of 1.1 kg , is located at $(1.0,1.5) \mathrm{m}$. Mass 2 , with a mass of 3.4 kg , is located at $(3.0,1.0) \mathrm{m}$. Mass 3, with a mass of 1.3 kg , is located at $(1.5,2.5) \mathrm{m}$. Where is the center of mass of the three-object system?


Knowns:

$$
m_{1}=1.1 \mathrm{~kg} ; r_{1}=(1.0,1.5) \mathrm{m} ; m_{2}=3.4 \mathrm{~kg} ; r_{2}=(3.0,1.0) \mathrm{m}^{2} m_{3}=1.3 \mathrm{~kg} ; r_{3}=(1.5,2.5) \mathrm{m} ; r_{c m}=?
$$

$$
x_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(1.1)(1)+(3.4)(3)+(1.3)(1.5)}{1.1+3.4+1.3}=2.28448 \approx 2.3 \mathrm{~m}
$$

$$
y_{c m}=\frac{m_{1} y_{1}+m_{2} y_{2}+m_{3} y_{3}}{m_{1}+m_{2}+m_{3}}=\frac{(1.1)(1.5)+(3.4)(1)+(1.3)(2.5)}{1.1+3.4+1.3}=1.43103 \approx 1.4 \mathrm{~m}
$$

$$
r_{c m} \approx(2.3,1.4) \mathrm{m}
$$

Note: The Center of Mass is different than the Centroid, which is the geometric center, or where the center of mass would be if all of the masses were the same.

$$
\begin{aligned}
& x_{a v g}=\frac{x_{1}+x_{2}+x_{3}}{3}=\frac{1+3+1.5}{3}=1.8 \overline{3} \approx 1.8 \mathrm{~m} \\
& y_{\text {avg }}=\frac{y_{1}+y_{2}+y_{3}}{3}=\frac{1.5+1+2.5}{3}=1 . \overline{6} \approx 1.7 \mathrm{~m}
\end{aligned}
$$



$$
r_{\text {centrocid }} \approx(1.8,1.7) \mathrm{m}
$$



