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Flipping Physics Lecture Notes: 
 

Merry-Go-Round 
Conservation of Angular Momentum Problem 

 
Example: A 25 kg child is sitting on the edge of a merry-go-round. The merry-go-
round has a mass of 255 kg and is rotating at 2.0 radians per second. The child 
crawls to the middle of the merry-go-round. What is the final angular speed of the 
merry-go-round? You may make the following estimations: The child is a point 
particle; the merry-go-round is a solid disk and has an axle with negligible friction. 
Idisk = ½MR2. 
 

 

 
For subscripts let’s use c for child and w for wheel (a.k.a merry-go-round). Because net torque equals 
change in angular momentum over change in time, we know angular momentum is conserved when the 
net external torque acting on the system equals zero. There is no friction on the axle of the merry-go-
round, so, because it equals zero, friction on the axle does not cause an external torque on the merry-go-
round. As the child crawls toward its center, there is a force of static friction from the merry-go-round on 
the child and, according to Newton’s third law, an equal but opposite force of static friction from the child 
on the merry-go-round. Because the axis of rotation is at the center of the merry-go-round, those two 
forces cause equal but opposite torques on the child and merry-go-round system, which means the two 
torques are internal to the system and cancel one another out. So the net torque on the system is zero 
and angular momentum, about the axle of the merry-go-round, is conserved. 

 
• There is no direction given in the problem and we are solving for angular speed. So let’s drop the 

vector symbol from the equations and solve for the magnitude of final angular velocity. 

• The equation for angular momentum of a rigid object with shape is: . 
• When a point particle is moving in circular motion, the point particle has an angular momentum: 

. We will assume this to be true for now, however, we will prove this in a later lesson. 
 

 
 

 
• Notice that we do not need subscripts for initial and final for the rotational inertia of the 

wheel/merry-go-round because its rotational inertia does not change. 

•  

• Both objects have the same angular velocities:   

• For the radius of the wheel, let’s use R:  
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• The initial distance from the axis of rotation to the location of the child is the same as the radius of 

the wheel: . 

• The final distance from the axis of rotation to the location of the child is zero: . 
o Realize this means our child has zero rotational inertia when sitting at the center of the 

merry-go-round. Hopefully you realize this will not be true in real life because the child 
has non-zero size and therefore will have rotational inertia. This is a simplified solution 
and helps with understanding. The child’s small size and therefore quite small rotational 
inertia relative to the merry-go-round makes this an okay estimation. 

 
• Everybody brought R2 to the party! 

 

 
 

 
Does it make sense that the angular velocity of the system increases as the child moves toward the 
middle of the merry-go-round? Let’s go back to the conservation of angular momentum equation near the 
beginning of the solution: 

 
Angular momentum is conserved. The rotational inertia of the wheel remains unchanged throughout the 
whole event. But as the child moves in toward the axis of rotation, the rotational inertia of the child 
decreases, therefore, in order to maintain a constant angular momentum of the system, the angular 
velocity of the system has to increase. In other words, the angular momentum of the system does not 
change, so if the rotational inertia of the system decreases, the angular velocity of the system must 
increase. 
 
Realize, this increase in angular velocity of the system actually represents an increase in the kinetic 
energy of the system. There is no translational motion of the system, so all of the kinetic energy is 
rotational kinetic energy. The change in kinetic energy of the system is: 

 

 

 

 
The change in kinetic energy of the system is positive because the child had to do work on herself, and 
therefore the system, in order to crawl from the outside edge to the center of the merry-go-round. 
Because net work equals change in kinetic energy, we know she did 60R2 joules of work on the system to 
increase the kinetic energy of the system. The larger the radius of the merry-go-round, the more work she 
has to do to the system. 
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