

Flipping Physics Lecture Notes:
Acceleration of a Wheel descending on a Rope
(Torque Solution)
Example: A rope is wrapped around a bicycle wheel with a rotational inertia of $0.68 \mathrm{MR}^{2}$. The wheel is released from rest and allowed to descend without slipping as the rope unwinds from the wheel. In terms of g , determine the acceleration of the wheel as it descends.

$$
\begin{aligned}
& \sum F_{y}=F_{T}-F_{g}=m a_{y} \Rightarrow F_{T}=F_{g}+M a_{y}=M g+M a_{y} \Rightarrow F_{T}=M\left(g+a_{y}\right) \\
& \sum \tau_{\substack{\text { AoR at } C \text { enter } \\
\text { of Wheel }}}=-\tau_{T}=I \alpha \Rightarrow-r F \sin \theta=-R F_{T} \sin 90=\left(0.68 M R^{2}\right)\left(\frac{a_{y}}{R}\right) \\
& \qquad a_{t}=r \alpha \Rightarrow a_{c m}=R \alpha=a_{y} \Rightarrow \alpha=\frac{a_{y}}{R} \\
& \text { Note: }
\end{aligned}
$$

$\Rightarrow F_{T}=-0.68 M a_{y}=M\left(g+a_{y}\right) \Rightarrow-0.68 a_{y}=g+a_{y} \Rightarrow-1.68 a_{y}=g \Rightarrow a_{y}=-\frac{g}{1.68}$
$\Rightarrow a_{y}=-0.59524 \mathrm{~g} \approx-0.60 \mathrm{~g}$

Testing our answer: $a_{y}=-0.59524 g=-(0.59524)(9.81)=-5.8393 \approx-5.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Predicted acceleration
$\Delta y=-0.75 \mathrm{~m} ; v_{\text {iy }}=0 ; \Delta t=0.49 \mathrm{sec}$
$\Delta y=v_{\text {iy }} \Delta t+\frac{1}{2} a \Delta t^{2}=\frac{1}{2} a \Delta t^{2} \Rightarrow a=\frac{2 \Delta y}{\Delta t^{2}}=\frac{(2)(-0.75)}{0.49^{2}}=-6.2474 \approx-6.2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$
Measured acceleration

