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Deriving Drag Force Motion Equations
http://www.flippingphysics.com/drag-force-motion-equations.html

We are going to use calculus to derive the equations of motion for an object with an initial
velocity of zero and a drag force acting on it described using the equation: F,=-bv

Let’s define down, the direction the object is moving, as positive. Believe it or not, this T
makes the math easier when we get further into the problem.

We can use Newton’s Second Law to determine the terminal velocity of the ball.
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Please realize the ball in our demonstration never gets close to its terminal velocity.

We can also use Newton’s Second Law to determine the velocity of the ball as a function of time:

ZF =F —FD:ma :)mg-bv:mﬂﬁﬂzg_ﬂ: 1 1
rg 7 dt dt m bv

dV=dt:>-V[ dV=jdt
0 v 0

m m

b(0
letu=g—ﬂ:>du=—£dV=>dV=—Edu&u,=g—ﬁ=g&u[=g—ﬂzu&J L dX=1n‘X+a‘
m b ! m m

:j%{—%)du:—(%)i%da:Idt:—[%][lnu]::MLz_(%]_ln(g_%ﬂvz[tl

{5 Sl e 5

lnA—lnlen(%J &e"=x

j lbvdvzjdt:j b 1 mg ) > j;mgd": = |m
o e

m m b b
bv
bv lng—; bv
g-— | bt g | m G- m bt bt
In mi-——se —erns—M-erngg-—=gem="—=g-ge ™
g m g

bt bt bt
=>V=ﬂ—ﬂem=ﬂ l-e™ |=ov|l-em™
b b b t

Actually, you do not have to use u substitution if you do not want to:
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Notice this fits our initial condition that the initial velocity equals zero:
_2(0)
V(0)= v|l-e ™ |= vt(l—e‘°)= Vt(1—1)= 0

It also gives us the same equation for terminal velocity:
)
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And we can take the derivative with respect to time of the velocity equation to get acceleration as a
function of time:
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This fits with our initial condition that the ball starts in free fall with an acceleration of magnitude g:
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And with the final condition that the ball will reach terminal velocity and have zero acceleration:
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And, we can take the integral with respect to time of our velocity equation to get the position of the ball as
a function of time. Setting our initial position as zero, our initial time as zero, our final position as y and our
final time as t:
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This fits our initial condition that the initial position equals zero:
b(0)
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Graphing these equations to 99% of the terminal velocity looks like this:
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