

Flipping Physics Lecture Notes:
Velocity as a function of Position in Simple Harmonic Motion http://www.flippingphysics.com/shm-velocity-vs-position.html

We have already derived ${ }^{1}$ this equation for total mechanical energy of a mass-spring system: $M E_{t}=\frac{1}{2} k A^{2}$
At any point in the motion of the mass-sprig system, it will have both kinetic and elastic potential energies:
$M E_{t}=K E+U_{e}=\frac{1}{2} m v^{2}+\frac{1}{2} k x^{2}=\frac{1}{2} k A^{2}$
And we can rearrange that equation to solve for velocity as a function of position:
$\Rightarrow m v^{2}=k A^{2}-k x^{2}=k\left(A^{2}-x^{2}\right) \Rightarrow v^{2}=\frac{k}{m}\left(A^{2}-x^{2}\right) \Rightarrow v=\sqrt{\frac{k}{m}\left(A^{2}-x^{2}\right)}$
Recall that angular frequency in a mass-spring system equals the square root of spring constant over mass.
$\omega=\sqrt{\frac{k}{m}}$
We have solved for the velocity of a mass-spring system in terms of position:
$\Rightarrow v(x)= \pm \omega \sqrt{A^{2}-x^{2}}$
This is actually an equation for an ellipse!

[^0]General equation for an ellipse centered at the origin: $\frac{y^{2}}{a^{2}}+\frac{x^{2}}{b^{2}}=1$
Rearranging our velocity as a function of position equation:

$$
v^{2}=\omega^{2}\left(A^{2}-x^{2}\right) \Rightarrow \frac{v^{2}}{\omega^{2}}=A^{2}-x^{2} \Rightarrow \frac{v^{2}}{\omega^{2}}+x^{2}=A^{2}
$$

This is an equation for an ellipse where b equals 1 and rather than 1 on the right hand side we have amplitude squared.
Another interesting way to look at this is to remember we derived earlier${ }^{2}$ that: $V_{\max }=A \omega$
Using that information, we can solve rearrange our equation for velocity as a function of position:
$v(x)= \pm \omega \sqrt{A^{2}-x^{2}}= \pm \omega \sqrt{\frac{A^{2}}{A^{2}}\left(A^{2}-x^{2}\right)}= \pm \omega \sqrt{A^{2}\left(\frac{A^{2}}{A^{2}}-\frac{x^{2}}{A^{2}}\right)}= \pm A \omega \sqrt{1-\frac{x^{2}}{A^{2}}}$
$\Rightarrow v(x)= \pm v_{\max } \sqrt{1-\frac{x^{2}}{A^{2}}}$
And you can see the velocity is at its maximum magnitude when $\mathrm{x}=0$ and at zero when $\mathrm{x}=\mathrm{A}$.
$\Rightarrow v(0)= \pm v_{\max } \sqrt{1-\frac{0^{2}}{A^{2}}}= \pm v_{\max } \sqrt{1}= \pm v_{\max }$
$\Rightarrow v(A)= \pm v_{\max } \sqrt{1-\frac{A^{2}}{A^{2}}}= \pm v_{\max } \sqrt{1-1}=0$

[^1]
[^0]: 1 "Maximum Energy in Simple Harmonic Motion" http://www.flippingphysics.com/shm-maximum-energy.html

[^1]: 2 "Simple Harmonic Motion Derivations using Calculus (Mass-Spring System)" http://www.flippingphysics.com/SHM-derivation-mass-spring.html

