The Law of Charges 1 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

	Law of Charges OFFERENTERS
	-Like charges repel
1	- Unlike charges attract
	- Positive + negative charges
	0
	Charge VIA
	1) Conduction (2 objects touching)
	2) Induction (grounding) (never touch)
	3) Polarization (alignment of charges)

Introduction to Point Charges 2 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

 $\varepsilon_o = 8.85 \text{ x } 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$ (also called vacuum permitivity)

Example - 2 Balloons on a String 3 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Introduction to Electric Fields 4 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

= ma 0 fiel gravitational O 0 field is £ defined bu 9 Small, positive + charge est Earth

Example - Electric Field from 2 Positive Charges 5 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes. P £ charges 0 2 equal IVQ. nom tizoa 2 e = cancel x-componer C 01 ummetru 0 14 2 = a 2 = 2 E, cos O COS COSF +2 COSO=# 2 a 200 3 >> 3 0 С akg 2 90 ya 43

Introduction to Electric Field due to Continuous Charge Distribution 6 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

4m3 arge density charge density /m2 A inear-charge density C/m

Example - Electric Field from Charged Rod 7 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Introduction to Electric Field Lines 9 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Electric field lines
- in direction of E field, -more lines = more charge
- lines/unit area ~ field strength
- Start + 1 to @tend @
(more one change than another. Efields >00
-Efield, lines haver cross

Example - Charge Moving between 2 Parallel Plates 10 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Introduction to Electric Flux 11 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Electric flux = # lines that pass through an area € EAcos O A angle thun 18 = E · N·M A Constant Efield e E = EA COS O = EA A e T=ERCOSO A EA 005 90 至= 0 =

Example - Net Electric Flux through a Closed Surface 12 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Introduction to Gauss' Law 13 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Example - E Field Outside a Solid, Uniform Insulating Sphere 14 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Example - E Field Inside a Solid, Uniform Insulating Sphere 15 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

11/1/12 1 of 1 Example - E Field caused by a Thin, Spherical, Uniformly Charged Shell 16 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

f thin spherical uniformly +Q X charged shell e. where = >2 K9 AC 2 5 C F < 3 Shere L = (0 da -=C2

Example - E Field caused by an Infinitely Long Line of Positive Charges 17 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

	Ex E= 2 @ r from ~ long line of positive charge				
	w/ uniform 2				
	AR E	T = Sc. 12 = 211	$\lambda = \frac{Q}{V} = \frac{Q_{1} n}{Q}$		
12	F K top	Te JC WG Eo	e ze		
14	+ +	SEda cos A = 20			
de) E(2mrd) = to		
		9 E da cos 0 = 60	Elmr = 2		
V	L'EM & bottom	SE dA = quin	2 2 60		
	Gaussian	0.0.0-910	E= anter		
	surface	E gan= Eo	E= 2(1) 2		
-	cylinder	EA = 2im			
	SEdgcos90=0	side to	C= ann		
	for top + bottom	EHade = Eo			
	for top + borrow	Citade Co			

Example - E Field caused by an Infinitely Long Plate of Positive Charges 18 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Example - Electric Field caused by 2 Infinitely Long Plates of Charges 19 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

Introduction to Conductors in Electrostatic Equilibrium 20 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

ho net motion of charges don't move charge * Conductors in electrostatic equilibrium (Assume of not stated) 1) Einsida = O If E + 0 -> Fe= 2E, so charges would move 2) All excess charge is on surface (RE = 0) $\overline{\Phi}_{e} = 9E \cdot dA = \frac{2!A}{E_{0}}$ 1aht SIN 2in = 0- e at that location + 1 to surface 3) €. $\sigma = \frac{dq}{10}$ outside If Efield has a component I to surface, it would int in estatic equilibrium be I = SE. dA = 910 SIDE $\oint E dA \cos 90 = 0 \qquad \oint E \cdot dA = 0$ $\oint E dA \cos 0 = \frac{2in}{E_0} \quad \frac{584}{E_0}$ EfdA = 21 E Aend = Bend Eo = Q qin= 6 April F = 6 4) For an irregular shape, o max @ radius of curvature min Palmer 11/1/12

AP Physics C Flipped Lecture Notes Chapter 23-24 20 - Introduction to Conductors in Electrostatic Equilibrium.doc

11/1/12 1 of 1 Example - Electric Field by 2 Concentric Spheres 21 AP Physics C – Video Lecture Notes Chapter 23-24 Thank You, Emily Rencsok, for these notes.

2c=? 26=? 1 Ie= SE. dA= 21h Eq Eo 21n=0 21n= 23+ 26 26=-23= -30 938 2R =-20 + 28 = 96 9 3Q = -2Q9 Q

Chapter 23-24 Review 22 AP Physics C – Video Lecture Notes Thank You, Emily Rencsok, for these notes.

Law of Charges () = neFe= K9.92 Coulomb's Uniform charge distribution JdE = Kda E=KSda r $\rho = Q$ 0 = Q $\lambda = P$ EIN Gaussian surface apital Fa SURFACE Gaussian SA Shape of Gaussian surface - dA Lor // to E field lines - Efield must be constant on Gaussian Surface GS # Inside + outside sphere (C + I -> Sphere * inside + outside shell sphere * infinitely long wire vort culind Amfinitely long plate horiz # 2 infinitely large // plates -> horiz cyl for 1+logic Conductors in ES equil outside sphere of uniform charge, acts like point charge