Introduction to Electric Potential Energy and Electric Potential Difference

1 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Example - Electric Potential due to 2 Positive Point Charges 5 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Example - Electric Potential along a Ring Axis (with Derivation) 6 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes. charge distribution # constant due to 2 da 0.9 Ex for V duo +0 Uni a +Q char par positively E=? 9 0 41 96 KQ 99 (32+X2) Ka dx Ja 2+ 29 12 (2 (22+x2)3/2

Charged Conductor in Electrostatic Equilibrium (with Example) 7 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Charged conductor in ES equilibrium Se . as -VA AV= VB Surface of a conductor in E.ds = Eds cos 0 = Eds cos 90 equil 15 an equipotentia E.43= 0 surface AV=C ES equil In Ex r, sra d>>ra d 11 192 V.=Va

Problem 25-59 - Work done to charge a sphere to Q 8 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Problem 25-60 Electric Field between 2 Parallel Plates 9 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

11/2/12 1 of 2

$$\Delta V = -Ed$$

$$\Delta V = -(4067.8)(0.12)$$

$$\Delta V = -488.14 V$$

$$\Delta V = 488 V$$
b) ME; = ME,
PEdeci = KE, + PEdecf
KE = - APE
KE = - APE
KE = - QAV
-KE = -(1.6×10⁻¹⁹)(-488.14)
[KE = 7.81×10⁻¹⁷ J]
d) KE = $\frac{1}{2}$ (1.67×10⁻²⁷) V, ²
V, = 3.058×10⁵ m15]
d) V, ² = $\frac{1}{2}$ (1.67×10⁻²⁷) V, ²
V, = 3.058×10⁵ m15]
d) V, ² = $\frac{1}{2}$ (0.12)
[a = 3.90×10¹¹ m15²]
e) $\leq F = m\overline{a}$
Fo = (1.67×10⁻²⁷)(3.90×10¹⁴)
[Fo = 6.51×10⁻¹⁶ N]
f) E = $\frac{E}{2}$
(E = 4070 N/C or $\frac{1}{2}$

Derivation of Capacitors in Parallel and Series 11 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes. capacitor batter switch n 4 + 0 IN IS CONSTANT +1 iav +QV 2 capacitors in parallel ANE=12V 0V AVE (terminal OV voltage

(2)	$C = \frac{Q}{\Delta V} \rightarrow Q = C \Delta V$	$\Delta V_t = \Delta V_1 = \Delta V_2$
40	$C_{+} \Delta V_{c} = C_{+} \Delta V_{c} + C_{2} \Delta V_{2}$	$Q_{\pm} = Q_{1} + Q_{2}$
20	$C_{parallel} = C_1 + C_2 + \dots$	
×	0	+-1+124
rent	2 capacitors in series + +12V	- T3012606
* CONSC	AVI- Q O=O-O+= AVE-TON	TovCa
reger	$\Delta V_{\perp} \neq \Delta V_{\perp} \neq \Delta V_{2}$	

 $\Delta V_{+} = \Delta V_{+} + \Delta V_{a}$

C.

03

Ca

Comes

C.

Ca

Q

Ct

Palmer	
AP Physics C Flipped Lecture Notes Chapter 25-26 11 - Derivation of Capacitors in Paral	lel and Series.doc

serves

C.

6-

C

Ca

Example - Capacitors in a Simple Circuit 12 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Derivation of Energy Stored in a Charged Capacitor 13 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Introduction to Dielectrics 14 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Example - Capacitance of a Spherical Conductor 15 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Problem 26-57 3 Plates, Electric Potential Difference and Charge 18 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

Problem 26-40 Pulling on one plate of a Parallel Plate Capacitor 19 AP Physics C – Video Lecture Notes Chapter 25-26 Thank You, Emily Rencsok, for these notes.

26-40 CI= Ca= Ci AN Known a) Uti = ? P) ANIE = 5 ANDE = 5 c) ()tt = ? d)(a=c)? de=2d; DV .: = DV 2: a) Ut: = U1: + U2+ $= \frac{1}{2} C_{ii} \Delta N_{i}^{2} + \frac{1}{2} C_{ai} \Delta N_{i}^{2}$ Ut:= C: AV:2 b) $\Delta V_{if} = \Delta V_{2f} = \Delta V_{f} = ?$ $C_{2f} = \frac{kE_{0}H}{de} = \frac{kE_{0}H}{2d}$ $Q_{ti} = Q_{tf}$ $Q_{1i} + Q_{2i} = Q_{1f} + Q_{2f}$ $C_{2f} = \frac{1}{2} k f_0 R/di$ $C_{1i} \Delta V_{1i} + C_{2i} \Delta V_{2i} = C_{1f} \Delta V_{1f} + C_{2f} \Delta V_{2f}$ $C_{2f} = \frac{1}{2} C_{i}$ $C_{\alpha} N_{i} + C_{i} \Delta N_{i} = C_{\alpha} \Delta N_{e} + (\frac{c_{\alpha}}{2}) \Delta N_{e}$ $C = \frac{Q}{AV} \rightarrow Q = C \Delta V$ $2\Delta V_{i} = \frac{3}{2}\Delta V_{f}$ $\Delta V_{e} = \frac{4}{3} \Delta V_{i}$ c) $U_{++} = U_{2+} + U_{++}$ d) Energy was put in to = 1 C14 AV102 + 2 C24 AV202 move plates apart 3+ = = (= =) ADVi C: AV; 2 (18 16 36 100 100 = C: AV:2 = (i AVi 34 $J_{\mu} = \frac{1}{3}C; \Delta V;$

Palmer AP Physics C Flipped Lecture Notes Chapter 25-26 19 - Problem 26-40 Pulling on one plate of a Parallel Plate Capacitor.doc 11/2/12 1 of 1

AP Physics C – Video Lecture Notes 20 Chapter 25-26 Review Thank You, Emily Rencsok, for these notes. dv Ar AV Equipotential Surface $(\Delta N = 0)$ No work to move a charge @ CV to Efield lines T E always positive $\Delta V =$ = 2 Gauss' Law AV, = = ($+C_{a}+C_{z}$ Qt=Q,+ AV4= AV, W + 41 0 .. 0 $QAV = \frac{1}{2}C(AV)^2$ 12 E V > AVV > CT