

Flipping Physics Lecture Notes:
Introductory Vector Addition Problem using Component Vectors
Example Problem: Slow Velocity Racer races 50.0 cm East, then turns 35° North of East and scoots for 40.0 cm . She then turns and moseys another 30.0 cm North. What was her total displacement?
$\vec{A}=50.0 \mathrm{~cm} E, \vec{B}=40.0 \mathrm{~cm} N$ of $E, \vec{C}=30.0 \mathrm{~cm} \mathrm{~N} \&$
$\vec{A}+\vec{B}+\vec{C}=\vec{R}=$?
Break vector \vec{B} in to its components.
$\sin \theta=\frac{O}{H}=\frac{\vec{B}_{y}}{\vec{B}} \Rightarrow \vec{B}_{y}=\vec{B} \sin \theta=40 \sin (35)=22.943 \mathrm{~cm}$ $\cos \theta=\frac{A}{H}=\frac{\vec{B}_{x}}{\vec{B}} \Rightarrow \vec{B}_{x}=\vec{B} \cos \theta=40 \cos (35)=32.766 \mathrm{~cm}$

Redraw the Vector Diagram.
And now we have a right triangle and can use SOH CAH TOA and the Pythagorean theorem.

$$
\begin{aligned}
& a^{2}+b^{2}=c^{2} \Rightarrow R^{2}=\left(A+B_{x}\right)^{2}+\left(B_{y}+C\right)^{2} \\
& \Rightarrow R=\sqrt{\left(A+B_{x}\right)^{2}+\left(B_{y}+C\right)^{2}}=\sqrt{(50+32.766)^{2}+(22.943+30)^{2}}=98.251 \mathrm{~cm} \\
& \tan \phi=\frac{O}{A}=\frac{B_{y}+C}{A+B_{x}} \Rightarrow \phi=\tan ^{-1}\left(\frac{B_{y}+C}{A+B_{x}}\right)=\tan ^{-1}\left(\frac{22.943+30}{50+32.766}\right)=32.606^{\circ} \\
& \Rightarrow \vec{R} \approx 98 \mathrm{~cm} @ 33^{\circ} \text { Nof } E
\end{aligned}
$$

Flipping Physics Lecture Notes:
Using a Data Table to Make Vector Addition Problems Easier
An Easy way to see that this works is by using a table.

Vector	x-direction (cm)	y-direction (cm)
\vec{A}	50	0
\vec{B}	32.766	22.943
\vec{C}	0	30
\vec{R}	$\vec{R}_{x}=50+32.766+0=82.766$	$\vec{R}_{y}=0+22.943+30=52.943$

And you can see that the components \vec{R}_{x} and \vec{R}_{y} add up to vector \vec{R}.

