Flipping Physics Lecture Notes:
Understanding Instantaneous and Average Velocity using a Graph

Instantaneous Velocity: The velocity at a specific point in time.

- The UAM variables Velocity Final and Velocity initial are instantaneous velocities because they are at specific points in time.

Average Velocity: The velocity over a time period.

- $v=\frac{\Delta x}{\Delta t}$ is an average velocity because Δt is the time period over which the velocity occurs.

Example Graph:

$v=\frac{\Delta x}{\Delta t} \Rightarrow v_{(0-5 \mathrm{sec})}=\frac{\Delta x}{\Delta t}=\frac{x_{f}-x_{i}}{t_{f}-t_{i}}=\frac{x_{5}-x_{0}}{t_{5}-t_{0}}=\frac{2-2}{5-0}=\frac{0}{5}=0$
$\mathrm{V}_{(0-5 \mathrm{sec})}=>$ An average velocity because it is a time period from 0 to 5 seconds.
$v_{(5-10 \mathrm{sec})}=\frac{\Delta x}{\Delta t}=\frac{x_{10}-x_{5}}{t_{10}-t_{5}}=\frac{7-2}{10-5}=\frac{5}{5}=1.0 \frac{m}{s}$
(again, an average velocity)
Velocity at 6 seconds, at 7 seconds, at 9.85342 seconds are all equal to $1.0 \mathrm{~m} / \mathrm{s}$. All are at a specific point in time and therefore instantaneous velocities. Note: It's the slope of the line, which we have shown to be velocity.

$$
v_{(0-17 \mathrm{sec})}=\frac{\Delta x}{\Delta t}=\frac{x_{17}-x_{0}}{t_{17}-t_{0}}=\frac{7-2}{17-0}=\frac{5}{17}=0.29412 \approx 0.29 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

