

Flipping Physics Lecture Notes: Introductory Tip-to-Tail Vector Addition Problem

Determining the velocity of the track:  $v = \frac{\Delta x}{\Delta t} = \frac{600 \text{ mm North}}{12.2 \text{ sec}} = 49.180 \approx 49 \frac{\text{mm}}{s} \text{ North}$ 

The Velocity Vectors:  $[Track] \vec{A} = 49 \frac{mm}{s} North \& [racecar] \vec{B} = 42 \frac{mm}{s} East$ 



 $\vec{A} + \vec{B} = \vec{R} = ?$ 

This is called Tip-to-Tail Vector Addition. To add vectors  $\vec{A}$  and  $\vec{B}$ , the tip of vector  $\vec{A}$  is placed on the tail of vector  $\vec{B}$ . The result is called the Resultant Vector  $\vec{R}$ , which is what we are trying to find.

We can find the magnitude of  $\vec{R}$  by using the Pythagorean theorem:  $a^2 + b^2 = c^2 \Rightarrow R^2 = A^2 + B^2 \Rightarrow R = \sqrt{A^2 + B^2} = \sqrt{49^2 + 42^2} = 64.537 \approx 65 \frac{mm}{s}$ 

We can find the direction of  $\vec{R}$  by using SOH CAH TOA:

$$\tan \theta = \frac{O}{A} = \frac{B}{A} = \frac{42}{49} \Longrightarrow \theta = \tan^{-1} \left(\frac{42}{49}\right) = 40.601^{\circ} \approx 41^{\circ}$$

Therefore the resultant velocity vector  $\vec{R}$  is:  $\vec{R} \approx 65 \frac{mm}{s} @41^{\circ} E of N$ 

In other words: 
$$\vec{A} + \vec{B} = \vec{R} \Rightarrow 49 \frac{mm}{s} North + 42 \frac{mm}{s} East \approx 65 \frac{mm}{s} @41^{\circ} E of N$$

(The cardinal direction East of North will be explained in the next video)