

Flipping Physics Lecture Notes: Introductory Tip-to-Tail Vector Addition Problem

Determining the velocity of the track: $v=\frac{\Delta x}{\Delta t}=\frac{600 \mathrm{~mm} \text { North }}{12.2 \mathrm{sec}}=49.180 \approx 49 \frac{\mathrm{~mm}}{\mathrm{~s}}$ North

The Velocity Vectors: $[$ Track $] \vec{A}=49 \frac{\mathrm{~mm}}{\mathrm{~s}}$ North \& [racecar $] \vec{B}=42 \frac{\mathrm{~mm}}{\mathrm{~s}}$ East

$$
\vec{A}+\vec{B}=\vec{R}=\text { ? }
$$

This is called Tip-to-Tail Vector Addition. To add vectors \vec{A} and \vec{B}, the tip of vector \vec{A} is placed on the tail of vector \vec{B}. The result is called the Resultant Vector \vec{R}, which is what we are trying to find.

We can find the magnitude of \vec{R} by using the Pythagorean theorem:

$$
a^{2}+b^{2}=c^{2} \Rightarrow R^{2}=A^{2}+B^{2} \Rightarrow R=\sqrt{A^{2}+B^{2}}=\sqrt{49^{2}+42^{2}}=64.537 \approx 65 \frac{\mathrm{~mm}}{\mathrm{~s}}
$$

We can find the direction of \vec{R} by using SOH CAH TOA:
$\tan \theta=\frac{O}{A}=\frac{B}{A}=\frac{42}{49} \Rightarrow \theta=\tan ^{-1}\left(\frac{42}{49}\right)=40.601^{\circ} \approx 41^{\circ}$
Therefore the resultant velocity vector \vec{R} is: $\vec{R} \approx 65 \frac{\mathrm{~mm}}{\mathrm{~s}} @ 41^{\circ} \mathrm{E}$ of N
In other words: $\vec{A}+\vec{B}=\vec{R} \Rightarrow 49 \frac{\mathrm{~mm}}{\mathrm{~s}}$ North $+42 \frac{\mathrm{~mm}}{\mathrm{~s}}$ East $\approx 65 \frac{\mathrm{~mm}}{\mathrm{~s}} @ 41^{\circ}$ E of N
(The cardinal direction East of North will be explained in the next video)

