

Flipping Physics Lecture Notes:
Introduction to Vector Components

Starting with the displacement vector for our Slow Velocity Racer, $\vec{d}=90.0 \mathrm{~cm} @ 32^{\circ} N$ of E, we can determine the components, or pieces, of displacement \vec{d} in the x and y directions.

And we can use CAH to find the displacement in the x direction:
$\cos \theta=\frac{A}{H}=\frac{\stackrel{\rightharpoonup}{d}_{x}}{\vec{d}} \Rightarrow \vec{d}_{x}=\vec{d} \cos \theta=90 \cos (32)=76.324 \approx 76 \mathrm{~cm}$
So have broken our displacement vector \vec{d} in to its components in the x and y direction:

$$
\vec{d}_{y} \approx 48 \mathrm{~cm} \& \vec{d}_{x} \approx 76 \mathrm{~cm}
$$

You can also say "resolve" vectors in to components. I prefer "break" vectors in to components, it has that hard " k " sound, which makes it more fun to say.
$\vec{d}_{y} \approx 48 \mathrm{~cm} \& \vec{d}_{x}$ are the components of \vec{d} because they add up to the vector $\vec{d} \cdot\left[\vec{d}_{y}+\vec{d}_{x}=\vec{d}\right]$ We can show this by working this problem now in reverse. First we find the magnitude of \vec{d} by using the Pythagorean theorem.

$$
a^{2}+b^{2}=c^{2} \Rightarrow d^{2}=d_{x}^{2}+d_{y}^{2} \Rightarrow d=\sqrt{d_{x}^{2}+d_{y}^{2}}=\sqrt{(76.324)^{2}+(47.493)^{2}}=89.894 \mathrm{~cm}
$$

And then we can find the direction by using TOA:

$$
\tan \theta=\frac{O}{A}=\frac{\vec{d}_{y}}{\vec{d}_{x}} \Rightarrow \theta=\tan ^{-1}\left(\frac{\vec{d}_{y}}{\vec{d}_{x}}\right)=\tan ^{-1}\left(\frac{47.493}{76.324}\right)=31.892^{\circ}
$$

Therefore, rounded to 2 sig figs, we get:
$\vec{d} \approx 9.0 \times 10^{1} \mathrm{~cm} @ 32^{\circ} N$ of E

Which is the displacement vector we started with.
Also notice that $\vec{d}_{y} \approx 48 \mathrm{~cm} \& \vec{d}_{x} \approx 76 \mathrm{~cm}$ are vectors because they do have both magnitude and direction. The subscripts of $\mathrm{y} \& \mathrm{x}$ illustrate the direction and both numbers are positive. This means that $\vec{d}_{y} \approx 48 \mathrm{~cm}$ is 48 cm in the positive y direction and $\vec{d}_{x} \approx 76 \mathrm{~cm}$ is 76 cm in the positive x direction.

