Example: A tennis ball with a mass of 58 grams is launched from a trebuchet with an initial speed of 6.8 m / s and an initial height of 1.3 meters. Assuming level ground, what is the final speed of the ball right before it strikes the ground?
$m=58 \mathrm{~g} ; v_{i}=6.8 \frac{\mathrm{~m}}{\mathrm{~s}} ; h_{i}=1.3 \mathrm{~m} ; v_{f}=$?

- =20 Initial Point

Identify initial and final points and set the horizontal zero line

$M E_{i}=M E_{f} \Rightarrow K E_{i}+P E_{g i}+P E_{\text {ei }}=K E_{f}+P E_{g t}+P E_{\text {ef }}$
$\Rightarrow \frac{1}{2} m v_{i}{ }^{2}+m g h_{i}+\frac{1}{2} k x_{i}^{2}=\frac{1}{2} m v_{f}{ }^{2}+m g h_{f}+\frac{1}{2} k x_{f}{ }^{2}$
$\Rightarrow \frac{1}{2} m v_{i}^{2}+m g h_{i}+\frac{1}{2} \underline{z v_{i}^{2}}=\frac{1}{2} m v_{f}^{2}+m g h_{f}+\frac{1}{2} \mathrm{kv}_{f}^{2}$
No Elastic Potential Energy at all because there is no spring and no Gravitational Potential Energy final because the vertical height final above the horizontal zero line is zero.
$\Rightarrow \frac{1}{2} \operatorname{mq} v_{i}^{2}+\operatorname{kg} g h_{i}=\frac{1}{2} \operatorname{mq} v_{f}^{2} \Rightarrow \frac{1}{2} v_{i}^{2}+g h_{i}=\frac{1}{2} v_{f}^{2} \quad$ Everybody brought mass to the party!
$\Rightarrow v_{i}^{2}+2 g h_{i}=v_{f}^{2} \Rightarrow v_{f}=\sqrt{v_{i}^{2}+2 g h_{i}}=\sqrt{6.8^{2}+(2)(9.81)(1.3)}=8.4703 \approx 8.5 \frac{\mathrm{~m}}{\mathrm{~s}}$
Note: This is the final speed of the ball, not the final velocity. Mechanical Energy is a scalar and therefore we can only solve for the magnitude of the final velocity.

Also note: We couldn't solve this problem using projectile motion because we did not have an initial angle for the projectile.

In case you were curious, I actually used projectile motion equations to determine the initial speed for this problem. I measured the vertical and horizontal displacements and, if you count frames, there are 57 frames from launch until landing, at 60 frames per second:
$\Delta t_{t}=57$ frames $\times \frac{1 \mathrm{sec}}{60 \text { frames }}=\frac{57}{60} s ; \Delta x_{t}=5.64 \mathrm{~m} ; \Delta y_{t}=-1.34 \mathrm{~m}$
$\Delta y=v_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2} \Rightarrow-1.34=v_{i y}\left(\frac{57}{60}\right)+\frac{1}{2}(-9.81)\left(\frac{57}{60}\right)^{2} \Rightarrow v_{i y}=3.24922 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{x}=\frac{\Delta x}{\Delta t}=\frac{5.64}{57 /}=5.93684 \frac{\mathrm{~m}}{\mathrm{~s}} \& \mathrm{a}^{2}+b^{2}=c^{2} \Rightarrow{v_{i}{ }^{2}={v_{i y}}^{2}+{v_{i x}}^{2} \Rightarrow{V_{i}}=\sqrt{V_{i y}{ }^{2}+v_{i x}{ }^{2}}}^{2}$
60
$v_{i}=\sqrt{3.24922^{2}+5.93684^{2}}=6.767832 \approx 6.8 \frac{\mathrm{~m}}{\mathrm{~S}}$ is the magnitude of the initial velocity.
Yes, we could use $\tan \theta=\frac{O}{H}=\frac{V_{i y}}{V_{i x}}$ to find the initial launch angle.

