Flipping Physics Lecture Notes:
AP Physics C: Rotational vs. Linear Review (Mechanics) https://www.flippingphysics.com/apc-rotational-vs-linear-review.html

Name:	Linear:	Rotational:
Displacement	$\Delta \vec{x}=x_{f}-x_{i}$	$\Delta \vec{\theta}=\theta_{f}-\theta_{i}$
Velocity	$\vec{V}_{\text {avg }}=\frac{\Delta \vec{x}}{\Delta t} \& \vec{V}_{\text {inst }}=\frac{d \vec{x}}{d t}$	$\stackrel{\rightharpoonup}{\omega}_{\text {avg }}=\frac{\Delta \vec{\theta}}{\Delta t} \& \stackrel{\rightharpoonup}{\omega}_{\text {inst }}=\frac{d \vec{\theta}}{d t}$
Acceleration	$\vec{a}_{\text {avg }}=\frac{\Delta \vec{v}}{\Delta t} \& \vec{a}_{\text {inst }}=\frac{d \vec{v}}{d t}$	$\vec{\alpha}_{\text {avg }}=\frac{\Delta \vec{\omega}}{\Delta t} \& \vec{\alpha}_{\text {inst }}=\frac{d \vec{\omega}}{d t}$
Uniformly Accelerated Motion (UAM) or Uniformly Angularly Accelerated Motion (UaM)	$\begin{aligned} & v_{f}=v_{i}+a t \\ & x_{f}=x_{i}+v_{i} t+\frac{1}{2} a t^{2} \\ & v_{f}^{2}=v_{i}^{2}+2 a\left(x_{f}-x_{i}\right) \\ & x_{f}-x_{i}=\frac{1}{2}\left(v_{f}+v_{i}\right) t \end{aligned}$	$\begin{aligned} & \omega_{f}=\omega_{i}+\alpha t \\ & \theta_{f}=\theta_{i}+\omega_{i} t+\frac{1}{2} \alpha t^{2} \\ & \omega_{f}=\omega_{i}+2 \alpha\left(\theta_{f}-\theta_{i}\right) \\ & \theta_{f}-\theta_{i}=\frac{1}{2}\left(\omega_{f}+\omega_{i}\right) t \end{aligned}$
Mass	Mass	$\begin{aligned} & I_{\text {particles }}=\sum_{i} m_{i} r_{i}^{2} \\ & I_{\text {object with shape }}=\int r^{2} d m \end{aligned}$
Kinetic Energy	$K E_{\text {translational }}=\frac{1}{2} m v^{2}$	$K E_{\text {rotational }}=\frac{1}{2} I \omega^{2}$
Newton's Second Law	$\sum \stackrel{\rightharpoonup}{F}=m \vec{a} \& \sum \stackrel{\rightharpoonup}{F}=\frac{d \vec{p}}{d t}$	$\sum \vec{\tau}=I \vec{\alpha} \& \sum \vec{\tau}=\frac{d \vec{L}}{d t}$
Force / Torque	Force	$\bar{\tau}=\vec{r} \times \vec{F}$
Power	$P_{\text {translational }}=\frac{d W}{d t}=\vec{F} \cdot \vec{V}$	$P_{\text {rotational }}=\frac{d W}{d t}=\vec{\tau} \cdot \vec{\omega}$
Momentum	$\stackrel{\rightharpoonup}{p}=m \vec{V}$	$\begin{gathered} \vec{L}_{\text {particle }}=\vec{r} \times \vec{p} \\ \vec{L}_{\text {object with shape }}=I \stackrel{\rightharpoonup}{\omega} \end{gathered}$

Thank you to Aarti Sangwan for pointing out that I didn't include a rotational form of work in the video.

Name:	Linear:	Rotational:
Work (constant force)	$W=\vec{F} \cdot \Delta \vec{r}=F \Delta r \cos \theta$	$W=\bar{\tau} \cdot \Delta \bar{\theta}$
Work (non-constant force)	$W=\int_{x_{i}}^{x_{f}} F_{x} d x$	$W=\int_{\theta_{i}}^{\theta_{f}} \tau d \theta$
Net Work-Kinetic Energy Theorem	$W_{\text {net }}=\Delta K E=\frac{1}{2} m v_{f}{ }^{2}-\frac{1}{2} m v_{i}{ }^{2}$	$W_{\text {net }}=\Delta K E=\frac{1}{2} I \omega_{f}{ }^{2}-\frac{1}{2} I \omega_{i}{ }^{2}$

A little bonus: Look what happens when we combine a couple of the above formulas:

$$
W_{\text {net }}=\bar{\tau}_{\text {net }} \cdot \Delta \vec{\theta}=I \alpha \Delta \theta=\frac{1}{2} I \omega_{f}^{2}-\frac{1}{2} I \omega_{i}^{2} \Rightarrow 2 \alpha \Delta \theta=\omega_{f}^{2}-\omega_{i}^{2} \Rightarrow \omega_{f}^{2}=\omega_{i}^{2}+2 \alpha \Delta \theta \text { (UaM!) }
$$

