

Flipping Physics Lecture Notes:

Introduction to Uniformly Angularly Accelerated Motion

Just like an object can have Uniformly Accelerated Motion or UAM and object can have Uniformly Angularly Accelerated Motion, $U\alpha M$. This table compares the two:

If the following is constant	linear acceleration, a	angular acceleration, α
we can use the equations	UAM	UαM
There are 5 variables	$oldsymbol{v}_{_{f}},oldsymbol{v}_{_{i}},oldsymbol{a},\Delta x,\Delta t$	$\omega_{_{f}}, \omega_{_{i}}, \alpha, \Delta\theta, \Delta t$
There are 4 equations	$\boldsymbol{v}_{f} = \boldsymbol{v}_{i} + \boldsymbol{a}\Delta t$	$\omega_{f} = \omega_{i} + \alpha \Delta t$
	$\Delta \mathbf{x} = \mathbf{v}_i \Delta t + \frac{1}{2} \mathbf{a} \Delta t^2$	$\Delta \theta = \omega_i \Delta t + \frac{1}{2} \alpha \Delta t^2$
	$v_i^2 = v_i^2 + 2a\Delta x$	$\omega_{f}^{2} = \omega_{i}^{2} + 2\alpha\Delta\theta$
	$\Delta \boldsymbol{x} = \frac{1}{2} \left(\boldsymbol{v}_{f} + \boldsymbol{v}_{i} \right) \Delta t$	$\Delta \theta = \frac{1}{2} \left(\omega_{f} + \omega_{i} \right) \Delta t$
		Use Radians!

If we know 3 of the variables we can find the other 2. Which leaves us with 1 Happy Physics Student!

When you use the Uniformly Angularly Accelerated Motion equations please use radians for your angular quantities. Most of the time you have to use radians in the U α M equations and you always can use radians in the U α M equations. Therefore, please, always use radians in the U α M equations.